Abstract:
Systems and techniques are disclosed for generating weighted machine learned models using multi-shard combiners. A learner in a machine learning system may receive labeled positive and negative examples and workers within the learner may be configured to receive either positive or negative examples. A positive and negative statistic may be calculated for a given feature and may either be applied separately in a model or may be combined to generate an overall statistic.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.