Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
Abstract:
Methods and apparatus related to determining reply content for a reply to an electronic communication. Some implementations are directed generally toward analyzing a corpus of electronic communications to determine relationships between one or more original message features of “original” messages of electronic communications and reply content that is included in “reply” messages of those electronic communications. Some implementations are directed generally toward providing reply text to include in a reply to a communication based on determined relationships between one or more message features of the communication and the reply text.
Abstract:
A method, computer readable storage device, and apparatus for determining the distance a computing device is located from a user's face. An image of an individual is obtained. A first pupil location and a second pupil location are identified based on the obtained image. A first distance between the identified first and second pupil location is determined. A second distance between the individual and the computing device is determined based on the determined first distance between the identified first and second pupil locations.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
Abstract:
A system includes one or more computers and one or more storage devices storing instructions that when executed by the one or more computers cause the computers to implement a combined machine learning model for processing an input including multiple features to generate a predicted output for the machine learning input. The combined model includes: a deep machine learning model configured to process the features to generate a deep model output; a wide machine learning model configured to process the features to generate a wide model output; and a combining layer configured to process the deep model output generated by the deep machine learning model and the wide model output generated by the wide machine learning model to generate the predicted output, in which the deep model and the wide model have been trained jointly on training data to generate the deep model output and the wide model output.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using recurrent neural networks to analyze health events. One of the methods includes obtaining a first temporal sequence of health events, wherein the first temporal sequence comprises respective health-related data associated with a particular patient at each of a plurality of time steps; processing the first temporal sequence of health events using a recurrent neural network to generate a neural network output for the first temporal sequence; and generating, from the neural network output for the first temporal sequence, health analysis data that characterizes future health events that may occur after a last time step in the temporal sequence.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating document vector representations. One of the methods includes obtaining a new document; selecting a plurality of new document word sets; and determining a vector representation for the new document using a trained neural network system, wherein the trained neural network system comprises: a document embedding layer and a classifier, and wherein determining the vector representation for the new document using the trained neural network system comprises iteratively providing each of the plurality of new document word sets to the trained neural network system to determine the vector representation for the new document using gradient descent.