Abstract:
An environmental control system of an aircraft includes a ram air circuit including a ram air shell having at least one heat exchanger positioned therein, at least one dehumidification system arranged in fluid communication with the ram air circuit, a compressing device arranged in fluid communication with the ram air circuit and the dehumidification system, and an expansion device separate from the compressing device and arranged in fluid communication with the ram air circuit and the at least one dehumidification system. The environmental control system receives a flow of a first medium and a flow of a second medium. The environmental control system is operable in a plurality of modes and in a first mode, a flow of the first medium is provided to the compressing device and the expansion device in series.
Abstract:
An environmental control system of an aircraft includes a ram air circuit including a ram air shell having at least one heat exchanger positioned therein, at least one dehumidification system arranged in fluid communication with the ram air circuit, a compressing device arranged in fluid communication with the ram air circuit and the dehumidification system, and an expansion device separate from the compressing device and arranged in fluid communication with the ram air circuit and the at least one dehumidification system. The environmental control system receives a flow of a first medium and a flow of a second medium. The environmental control system is operable in a plurality of modes and in a first mode, a flow of the first medium is provided to the compressing device and the expansion device in series.
Abstract:
An airplane is provided. The airplane includes a pack. The pack includes a shaft, a compressor, and a turbine coupled to the compressor via the shaft. The turbine receives and expands a first medium to provide power to the compressor via the shaft. The compressor receives and compresses a second medium in accordance with the power provided by the turbine via the shaft. The turbine is fluidly coupled to a heat exchanger of an air conditioning system.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers.
Abstract:
A system includes a first flow path fluidly connecting a first supply to an inerting apparatus. A second flow path connects a second supply to a turbine of a compressor device. A first valve, located within the first flow path, is configured to be open in a first state and closed in a second state. The first valve is configured to allow a supply of air from the first supply to an inerting apparatus directly. A second valve, located within the second flow path, is configured to be closed in the first state and open in the second state. The second valve is configured to allow a supply of air from the second supply to drive the turbine of the compressor device. When in the second state, the compressor device is operated to compress air from the first supply prior to the air being supplied to the inerting apparatus.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers.
Abstract:
An environmental control system of an aircraft includes a ram air circuit including a ram air shell having at least one heat exchanger positioned therein, a dehumidification system arranged in fluid communication with the ram air circuit, and a compression device arranged in fluid communication with the ram air circuit and the dehumidification system. The compression device includes a compressor, a turbine, and a fan coupled by a shaft, wherein the fan is operable to move ram air through the ram air circuit and the turbine includes a first inlet for receiving a first flow of medium and a second inlet for receiving a second flow of medium.
Abstract:
Disclosed is a method of environmental control, comprising: passing a first air stream and a second air stream through a valve; wherein the valve directs the first air stream through a first adsorption bed and directs the second air stream through a second adsorption bed; wherein the first adsorption bed produces a dehumidified air stream, and wherein the second adsorption bed is purged of moisture by the second air stream, thus producing a purge stream; and using the valve to redirect the first air stream and the second air stream when the first adsorption bed reaches a moisture saturation point or a timed interval, wherein the first air stream passes through the second adsorption bed and the second air stream passes through the first adsorption bed.
Abstract:
A replacement system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers. The replacement system employs a subsystem to treat the medium from the low-pressure location of the engine before it is received by the inerting system.
Abstract:
A system includes an inlet line configured to receive a medium flowing from a low-pressure location of an engine to a chamber, a plurality of heat exchangers configured to receive the medium from the inlet line, and a valve located upstream from the plurality of heat exchangers. The valve is configured to divide in parallel the medium across at least a first heat exchanger and a second heat exchanger of the plurality of heat exchangers. A recirculation air system is configured to supply a recirculation.