Abstract:
Systems and methods for a cold atom frequency standard are provided herein. In certain embodiments, a cold atom microwave frequency standard includes a vacuum cell, the vacuum cell comprising a central cylinder, the central cylinder being hollow and having a first open end and a second open end; a first end portion joined to the first open end; and a second end portion joined to the second open end, wherein the first end portion, the central cylinder, and the second end portion enclose a hollow volume containing atoms, the first end portion and the second end portion configured to allow light to enter into the hollow volume. The cold atom microwave frequency standard also includes a cylindrically symmetric resonator encircling the central cylinder, wherein the resonator generates a microwave field in the hollow volume at the resonant frequency of the atoms.
Abstract:
In one embodiment, a block for a physics package of an atomic sensor is provided. The block comprises one or more sections of optically transparent material defining a vacuum sealed chamber, and including a plurality of transmissive and reflective surfaces to define a plurality of light paths intersecting the vacuum sealed chamber. The one or more sections of optically transparent material include a first monolithic section defining at least a portion of the vacuum sealed chamber. The first monolithic section includes a first portion disposed across a first light path of the plurality of light paths such that light in the first light path is incident on the first portion of the first monolithic section.
Abstract:
A method for reducing or eliminating clock bias in an atomic clock is provided. The method comprises cooling a population of atoms collected in the atomic clock using a laser locked at a predetermined frequency, turning off the laser, performing atomic clock spectroscopy, turning on the laser after the atomic clock spectroscopy, and relocking the frequency of the laser to an external reference cell. The population of atoms that are in each of two ground hyperfine levels is then probed using laser light that is on or near-resonant with a selected atomic transition.