Abstract:
Embodiments provide a base station, including an antenna unit and a radio frequency unit. A port corresponding to a receive channel that is of the radio frequency unit and in a working state and a port corresponding to a transmit channel that is of the radio frequency unit and in the working state are separately connected to ports corresponding to different dual-polarized dipoles or different single-polarized dipoles in the antenna unit. The different dual-polarized dipoles or the different single-polarized dipoles in the antenna unit are mutually isolated.
Abstract:
Embodiments provide a base station, including an antenna unit and a radio frequency unit. A port corresponding to a receive channel that is of the radio frequency unit and in a working state and a port corresponding to a transmit channel that is of the radio frequency unit and in the working state are separately connected to ports corresponding to different dual-polarized dipoles or different single-polarized dipoles in the antenna unit. The different dual-polarized dipoles or the different single-polarized dipoles in the antenna unit are mutually isolated.
Abstract:
A wireless communications system includes a BBU, an optical multiplexer, M (greater than or equal to 2) first optical transceivers, and a wireless radio frequency apparatus, where the M first optical transceivers are provided between the BBU and the optical multiplexer, operating wavelengths of the M first optical transceivers are different from each other. The wireless radio frequency apparatus includes M RRUs, M second optical transceivers separately corresponding to the M first optical transceivers, and at least one optical splitter, where the M second optical transceivers are separately connected to the M RRUs, and an operating wavelength of a first optical transceiver matches an operating wavelength of a corresponding second optical transceiver. The M second optical transceivers are connected to a same optical fiber by the at least one optical splitter, and the optical fiber is connected to the optical multiplexer and one of the at least one optical splitter.
Abstract:
A wireless communications system includes a BBU, an optical multiplexer, M (greater than or equal to 2) first optical transceivers, and a wireless radio frequency apparatus, where the M first optical transceivers are provided between the BBU and the optical multiplexer, operating wavelengths of the M first optical transceivers are different from each other. The wireless radio frequency apparatus includes M RRUs, M second optical transceivers separately corresponding to the M first optical transceivers, and at least one optical splitter, where the M second optical transceivers are separately connected to the M RRUs, and an operating wavelength of a first optical transceiver matches an operating wavelength of a corresponding second optical transceiver. The M second optical transceivers are connected to a same optical fiber by the at least one optical splitter, and the optical fiber is connected to the optical multiplexer and one of the at least one optical splitter.
Abstract:
Embodiments provide a base station, including an antenna unit and a radio frequency unit. A port corresponding to a receive channel that is of the radio frequency unit and in a working state and a port corresponding to a transmit channel that is of the radio frequency unit and in the working state are separately connected to ports corresponding to different dual-polarized dipoles or different single-polarized dipoles in the antenna unit. The different dual-polarized dipoles or the different single-polarized dipoles in the antenna unit are mutually isolated.