Image recognition device using feature points, method for recognizing images using feature points, and robot device which recognizes images using feature points
    11.
    发明授权
    Image recognition device using feature points, method for recognizing images using feature points, and robot device which recognizes images using feature points 有权
    使用特征点的图像识别装置,使用特征点识别图像的方法,以及使用特征点识别图像的机器人装置

    公开(公告)号:US07627178B2

    公开(公告)日:2009-12-01

    申请号:US10517615

    申请日:2004-04-22

    IPC分类号: G06K9/46

    摘要: In an image recognition apparatus, feature point extraction sections and extract feature points from a model image and an object image. Feature quantity retention sections extract a feature quantity for each of the feature points and retain them along with positional information of the feature points. A feature quantity comparison section compares the feature quantities with each other to calculate the similarity or the dissimilarity and generates a candidate-associated feature point pair having a high possibility of correspondence. A model attitude estimation section repeats an operation of projecting an affine transformation parameter determined by three pairs randomly selected from the candidate-associated feature point pair group onto a parameter space. The model attitude estimation section assumes each member in a cluster having the largest number of members formed in the parameter space to be an inlier. The model attitude estimation section finds the affine transformation parameter according to the least squares estimation using the inlier and outputs a model attitude determined by this affine transformation parameter.

    摘要翻译: 在图像识别装置中,特征点提取部分并从模型图像和对象图像中提取特征点。 特征量保留部分提取每个特征点的特征量,并将其与特征点的位置信息一起保留。 特征量比较部分将特征量彼此进行比较以计算相似度或相似性,并生成具有高对应可能性的候选相关特征点对。 模型姿态估计部重复将从候选关联特征点对组中随机选择的三对决定的仿射变换参数投影到参数空间的动作。 模型姿态估计部分假设在参数空间中形成的具有最大数量的成员的群组中的每个成员是一个较早的。 模型姿态估计部根据使用该误差的最小二乘估计求出仿射变换参数,并输出由该仿射变换参数确定的模型姿态。

    Image Processing System, Learning Device and Method, and Program
    12.
    发明申请
    Image Processing System, Learning Device and Method, and Program 有权
    图像处理系统,学习装置和方法以及程序

    公开(公告)号:US20090041340A1

    公开(公告)日:2009-02-12

    申请号:US11813404

    申请日:2005-12-26

    IPC分类号: G06K9/46

    摘要: The present invention relates to an image processing system, a learning device and method, and a program which enable easy extraction of feature amounts to be used in a recognition process. Feature points are extracted from a learning-use model image, feature amounts are extracted based on the feature points, and the feature amounts are registered in a learning-use model dictionary registration section 23. Similarly, feature points are extracted from a learning-use input image containing a model object contained in the learning-use model image, feature amounts are extracted based on these feature points, and these feature amounts are compared with the feature amounts registered in a learning-use model registration section 23. A feature amount that has formed a pair the greatest number of times as a result of the comparison is registered in the model dictionary registration section 12 as the feature amount to be used in the recognition process. The present invention is applicable to a robot.

    摘要翻译: 本发明涉及图像处理系统,学习装置和方法以及能够容易地提取在识别处理中使用的特征量的程序。 从学习用模型图像提取特征点,基于特征点提取特征量,并且将特征量登记在学习用模型字典注册部23中。同样,从学习用途中提取特征点 基于这些特征点提取含有包含在学习用模型图像中的模型对象的输入图像,并将这些特征量与在学习用模型登记部23中登记的特征量进行比较。特征量 作为比较的结果,在模型字典登记部12中登记了作为识别处理中使用的特征量的最大次数的对。 本发明可应用于机器人。

    Data processing device that calculates an arrival probability for a destination using a user's movement history including a missing portion
    13.
    发明授权
    Data processing device that calculates an arrival probability for a destination using a user's movement history including a missing portion 有权
    数据处理装置,其使用包括缺失部分的用户的移动历史来计算目的地的到达概率

    公开(公告)号:US09589082B2

    公开(公告)日:2017-03-07

    申请号:US13878920

    申请日:2011-11-07

    摘要: The present invention relates to a data processing device, a data processing method, and a program which enable prediction to be performed even when there is a gap in the current location data to be obtained in real time. A learning main processor 23 represents movement history data serving as data for learning, as a probability model which represents a user's activity, and obtains a parameter thereof. A prediction main processor 33 uses the probability model obtained by learning to estimate a user's current location from movement history data to be obtained in real time. In the event that there is a data missing portion included in movement history data to be obtained in real time, the prediction main processor 33 generates the data missing portion thereof by interpolation processing, and estimates state nose series corresponding to the interpolated data for prediction. With estimation of state node series, an observation probability less contribution of data than actual data is employed regarding interpolated data. The present invention may be applied to a data processing device configured to predict a destination from movement history data, for example.

    摘要翻译: 数据处理装置,数据处理方法和程序技术领域本发明涉及即使在实时获取的当前位置数据存在间隙的情况下也能进行预测的数据处理装置,数据处理方法和程序。 学习主处理器23表示作为用于学习的数据的运动历史数据,作为表示用户的活动的概率模型,并且获得其参数。 预测主处理器33使用通过学习获得的概率模型来实时地获得的移动历史数据来估计用户的当前位置。 在要实时获取的移动历史数据中包含数据缺失部分的情况下,预测主处理器33通过内插处理生成其数据缺失部分,并且估计与用于预测的内插数据相对应的状态鼻序列。 通过估计状态节点序列,对于内插数据采用数据比实际数据更少的观测概率。 本发明可以应用于例如被配置为从移动历史数据预测目的地的数据处理装置。

    Information processing device, information processing method, and program
    14.
    发明授权
    Information processing device, information processing method, and program 有权
    信息处理装置,信息处理方法和程序

    公开(公告)号:US09285235B2

    公开(公告)日:2016-03-15

    申请号:US14005648

    申请日:2012-03-16

    CPC分类号: G01C21/3617 G01C21/3484

    摘要: The present technique relates to an information processing device, an information processing method and a program which can accumulate sufficient movement history data with a little power consumption. A similarity search unit searches for a past route similar to the immediate movement history which is acquired by a position sensor unit and which has time series position data, from the search data stored in a past history DB. A fitness determination unit determines whether or not goodness of fit of the past route searched by the similarity search unit and the immediate movement history is a predetermined threshold or more. A sensor control unit controls an acquisition interval of the position data of the position sensor unit according to a determination result of the fitness determination unit. The technique of this disclosure is applicable to a prediction device which, for example, acquires position data and predicts a predicted route.

    摘要翻译: 本技术涉及一种信息处理装置,信息处理方法和程序,其能够以少量功耗累积足够的运动历史数据。 相似度搜索单元从存储在过去历史DB中的搜索数据中搜索类似于由位置传感器单元获取并具有时间序列位置数据的即时移动历史的过去路线。 适应度确定单元确定由相似性搜索单元搜索的过去路线的适合度和即时移动历史是否为预定阈值以上。 传感器控制单元根据适应度判定单元的确定结果控制位置传感器单元的位置数据的采集间隔。 本公开的技术可应用于例如获取位置数据并预测预测路线的预测装置。

    DATA PROCESSING DEVICE, DATA PROCESSING METHOD, AND PROGRAM
    15.
    发明申请
    DATA PROCESSING DEVICE, DATA PROCESSING METHOD, AND PROGRAM 有权
    数据处理设备,数据处理方法和程序

    公开(公告)号:US20130197890A1

    公开(公告)日:2013-08-01

    申请号:US13878920

    申请日:2011-11-07

    IPC分类号: G06F17/50

    摘要: The present invention relates to a data processing device, a data processing method, and a program which enable prediction to be performed even when there is a gap in the current location data to be obtained in real time. A learning main processor 23 represents movement history data serving as data for learning, as a probability model which represents a user's activity, and obtains a parameter thereof. A prediction main processor 33 uses the probability model obtained by learning to estimate a user's current location from movement history data to be obtained in real time. In the event that there is a data missing portion included in movement history data to be obtained in real time, the prediction main processor 33 generates the data missing portion thereof by interpolation processing, and estimates state nose series corresponding to the interpolated data for prediction. With estimation of state node series, an observation probability less contribution of data than actual data is employed regarding interpolated data. The present invention may be applied to a data processing device configured to predict a destination from movement history data, for example.

    摘要翻译: 数据处理装置,数据处理方法和程序技术领域本发明涉及即使在实时获取的当前位置数据存在间隙的情况下也能进行预测的数据处理装置,数据处理方法和程序。 学习主处理器23表示作为用于学习的数据的运动历史数据,作为表示用户的活动的概率模型,并且获得其参数。 预测主处理器33使用通过学习获得的概率模型来实时地获得的移动历史数据来估计用户的当前位置。 在要实时获取的移动历史数据中包含数据缺失部分的情况下,预测主处理器33通过内插处理生成其数据缺失部分,并且估计与用于预测的内插数据相对应的状态鼻序列。 通过估计状态节点序列,对于内插数据采用数据比实际数据更少的观测概率。 本发明可以应用于例如被配置为从移动历史数据预测目的地的数据处理装置。

    DATA PROCESSING DEVICE, DATA PROCESSING METHOD, AND PROGRAM
    16.
    发明申请
    DATA PROCESSING DEVICE, DATA PROCESSING METHOD, AND PROGRAM 审中-公开
    数据处理设备,数据处理方法和程序

    公开(公告)号:US20110302116A1

    公开(公告)日:2011-12-08

    申请号:US13116940

    申请日:2011-05-26

    IPC分类号: G06F15/18

    摘要: A data processing device including a learning section which expresses user movement history data obtained as learning data as a probability model which expresses activities of a user and learns parameters of the model; a destination and stopover estimation section which estimates a destination node and a stopover node from state nodes of the probability model; a current location estimation section which inputs the user movement history data in the probability model and estimates a current location node which is equivalent to the current location of the user; a searching section which searches for a route from the current location of the user to a destination using information on the estimated destination node and stopover node and the current location node and the probability model obtained by learning; and a calculating section which calculates an arrival probability and a necessary time to the searched destination.

    摘要翻译: 一种数据处理装置,包括学习部,其将作为学习数据获取的用户移动历史数据表示为表示用户的活动并学习模型的参数的概率模型; 目的地和中途停留估计部,其从所述概率模型的状态节点估计目的地节点和中途停止节点; 当前位置估计部分,其输入概率模型中的用户移动历史数据,并估计与当前用户的当前位置相当的当前位置节点; 搜索部,其使用关于所估计的目的地节点和中继节点以及当前位置节点的信息和通过学习获得的概率模型来搜索从用户的当前位置到目的地的路线; 以及计算部分,其计算到所搜索到的目的地的到达概率和必要时间。

    DATA PROCESSING APPARATUS, DATA PROCESSING METHOD AND PROGRAM
    17.
    发明申请
    DATA PROCESSING APPARATUS, DATA PROCESSING METHOD AND PROGRAM 审中-公开
    数据处理设备,数据处理方法和程序

    公开(公告)号:US20110137833A1

    公开(公告)日:2011-06-09

    申请号:US12954194

    申请日:2010-11-24

    IPC分类号: G06N5/02 G06F15/18

    CPC分类号: G06N7/005

    摘要: The data processing apparatus includes a state series generation unit and a computing unit. The state series generation unit generates a time series data of state nodes from a time series data of event. The state transition model of the event is expressed as a stochastic state transition model. The computing unit computes the parameters for the stochastic state transition model of events by computing parameters of time series data corresponding to an appearance frequency of the state nodes, the appearance frequency of transitions among the state nodes and the like.

    摘要翻译: 数据处理装置包括状态序列生成单元和计算单元。 状态序列生成单元根据事件的时间序列数据生成状态节点的时间序列数据。 事件的状态转换模型表示为随机状态转换模型。 计算单元通过计算与状态节点的出现频率相对应的时间序列数据的参数,状态节点之间的转换的出现频率等来计算事件的随机状态转换模型的参数。

    DATA PROCESSING APPARATUS, DATA PROCESSING METHOD, AND PROGRAM
    18.
    发明申请
    DATA PROCESSING APPARATUS, DATA PROCESSING METHOD, AND PROGRAM 审中-公开
    数据处理设备,数据处理方法和程序

    公开(公告)号:US20110060709A1

    公开(公告)日:2011-03-10

    申请号:US12874553

    申请日:2010-09-02

    IPC分类号: G06F15/18

    CPC分类号: G01C21/3484

    摘要: A data processing apparatus includes an action learning unit configured to train a user activity model representing activity states of a user in the form of a probabilistic state transition model using time-series location data items of the user, an action recognizing unit configured to recognize a current location of the user using the user activity model obtained through the action learning unit, an action estimating unit configured to estimate a possible route for the user from the current location recognized by the action recognizing unit and a selection probability of the route, and a travel time estimating unit configured to estimate an arrival probability of the user arriving at a destination and a travel time to the destination using the estimated route and the estimated selection probability.

    摘要翻译: 一种数据处理装置,包括动作学习单元,被配置为使用表示使用者的时间序列位置数据项的概率状态转换模型的形式表示用户的活动状态的用户活动模型,动作识别单元, 使用通过动作学习单元获取的用户活动模型的用户的当前位置,动作估计单元,被配置为从动作识别单元识别的当前位置和路线的选择概率来估计用户的可能路线,以及 旅行时间估计单元,被配置为使用所估计的路线和估计的选择概率来估计到达目的地的用户的到达概率和到达目的地的行进时间。

    LEARNING APPARATUS AND METHOD, PREDICTION APPARATUS AND METHOD, AND PROGRAM
    19.
    发明申请
    LEARNING APPARATUS AND METHOD, PREDICTION APPARATUS AND METHOD, AND PROGRAM 有权
    学习装置和方法,预测装置和方法以及程序

    公开(公告)号:US20110137834A1

    公开(公告)日:2011-06-09

    申请号:US12954264

    申请日:2010-11-24

    IPC分类号: G06F15/18 G06N5/02

    CPC分类号: G06N99/005

    摘要: A learning apparatus includes: a location acquiring section for acquiring time series data on locations of a user; a time acquiring section for acquiring time series data on times; and learning section for learning an activity model indicating an activity state of the user as a probabilistic state transition model, using the respective acquired time series data on the locations and the times as an input.

    摘要翻译: 学习装置包括:位置获取部分,用于获取关于用户位置的时间序列数据; 时间获取部分,用于获取时间序列数据; 以及学习部分,用于将使用相应的获取的时间序列数据作为输入来学习指示用户的活动状态的活动模型作为概率状态转换模型。

    LEARNING APPARATUS, LEARNING METHOD AND PROGRAM
    20.
    发明申请
    LEARNING APPARATUS, LEARNING METHOD AND PROGRAM 审中-公开
    学习设备,学习方法和程序

    公开(公告)号:US20110137831A1

    公开(公告)日:2011-06-09

    申请号:US12917853

    申请日:2010-11-02

    IPC分类号: G06F15/18

    摘要: A learning apparatus includes: an interpolating section which interpolates data missing in time series data; an estimating section which estimates a Hidden Markov Model from the time series data; and a likelihood calculating section which calculates the likelihood of the estimated Hidden Markov Model. The likelihood calculating section calculates the likelihood for normal data which does not have missing data and the likelihood for interpolation data which is interpolated data in different conditions and calculates the likelihood of the Hidden Markov Model for the time series data in which the data is interpolated. The estimating section updates the Hidden Markov Model so that the likelihood calculated by the likelihood calculating section becomes high.

    摘要翻译: 学习装置包括:插入时间序列数据中丢失的数据的内插部分; 估计部分,根据时间序列数据估计隐马尔可夫模型; 以及计算估计隐马尔科夫模型的可能性的似然度计算部分。 似然度计算部分计算不具有缺失数据的正常数据的可能性以及在不同条件下被内插数据的内插数据的可能性,并计算隐藏马尔可夫模型对于其中内插数据的时间序列数据的可能性。 估计部分更新隐马尔可夫模型,使得由似然度计算部分计算的似然率变高。