Abstract:
One or more sensors gather data, one or more processors analyze the data, and one or more indicators notify a user if the data represent an event that requires a response. One or more of the sensors and/or the indicators is a wearable device for wireless communication. Optionally, other components may be vehicle-mounted or deployed on-site. The components form an ad-hoc network enabling users to keep track of each other in challenging environments where traditional communication may be impossible, unreliable, or inadvisable. The sensors, processors, and indicators may be linked and activated manually or they may be linked and activated automatically when they come within a threshold proximity or when a user does a triggering action, such as exiting a vehicle. The processors distinguish extremely urgent events requiring an immediate response from less-urgent events that can wait longer for response, routing and timing the responses accordingly.
Abstract:
Systems and techniques for extension of trust in a body area network are described herein. A device that may be a potential participant of the body area network may be identified. It may be determined that the device is worn by the body of the body area network based on a set of models of the body. The device may be promoted from potential participant to trusted participant of the body area network in response to determining that the device is on the body.
Abstract:
A communication system may include a plurality of geographically proximate nodes that communicate via one or more range-limited wireless technologies such as BLUETOOTH® low energy (BLE). An origin node may generate and communicate a first message responsive to detecting an event occurrence. The message may include an identifier associated with the origin node, data indicative of the event occurrence, a hop count, a maximum hop count, and a number of designated recipient nodes within the communication system. A first designated recipient node may, upon receiving the first message, attempt to confirm the event occurrence included in the first message. Upon confirming the event occurrence, the first designated recipient node may communicate a notification to an external third party. If unable to confirm the event occurrence, the first designated recipient node may generate and communicate a second message to a second designated recipient node included in the first message.
Abstract:
Techniques for acoustic management of entertainment devices and systems are described. Various embodiments may include techniques for acoustically determining a location of a remote control or other entertainment device. Some embodiments may include techniques for controlling one or more entertainment components using voice commands or other acoustic information. Other embodiments may include techniques for establishing a voice connection using a remote control device. Other embodiments are described and claimed.
Abstract:
A system and method for controlling access to a digital asset. A first host device is provided to a first host device owner and rights are determined to a digital asset. A digital charm is selected, wherein selecting includes granting to the digital charm certain rights to the digital asset. The digital charm is attached to the first host device to form a charm system, wherein attaching includes conferring, to the first host device owner, the rights to the digital asset that were granted to the digital charm.
Abstract:
The present application is directed to user authentication confidence based on multiple devices. A user may possess at least one device. The device may determine a device confidence level that the identity of the user is authentic based on at least data collected by a data collection module in the device. For example, a confidence module in the device may receive the data from the data collection module, determine a quality corresponding to the data and determine the device confidence level based on the quality. If the user possesses two or more devices, at least one of the devices may collect device confidence levels from other devices to determine a total confidence level. For example, a device may authenticate the other devices and then receive device confidence levels for use in determining the total confidence level, which may be used to set an operational mode in a device or system.
Abstract:
One or more sensors gather data, one or more processors analyze the data, and one or more indicators notify a user if the data represent an event that requires a response. One or more of the sensors and/or the indicators is a wearable device for wireless communication. Optionally, other components may be vehicle-mounted or deployed on-site. The components form an ad-hoc network enabling users to keep track of each other in challenging environments where traditional communication may be impossible, unreliable, or inadvisable. The sensors, processors, and indicators may be linked and activated manually or they may be linked and activated automatically when they come within a threshold proximity or when a user does a triggering action, such as exiting a vehicle. The processors distinguish extremely urgent events requiring an immediate response from less-urgent events that can wait longer for response, routing and timing the responses accordingly.