Abstract:
A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
Abstract:
Disclosed techniques include a computer-assisted device having an input control, a functional structure, and a processing system. The functional structure is configured to include a repositionable structure, and the repositionable structure is configured to support an instrument. The processing system is configured to receive a movement command from the input control, update a pose of a proxy based on the movement command and a proxy constraint, and cause the functional structure to move based on the updated pose of the proxy. In some embodiments, the input control controls a pose of a virtual leader device. The processing system updates a pose of a proxy based on the pose of the virtual leader device, updates a pose of a virtual follower device based on the updated pose of the proxy, and causes the functional structure to move based on the pose of the virtual follower device.
Abstract:
A system and method of breakaway clutching in a device includes a plurality of links coupled by a plurality of joints, a brake coupled to brake a first joint of the plurality of joints, and a control unit operatively coupled to the brake. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to a determination that an external stimulus applied to the plurality of links or the plurality of joints meets at least a first criterion and switches the first joint from the second state to the first state in response to a speed associated with the first joint meeting at least a second criterion. The control unit causes more braking with the first brake in the first state than in the second state.
Abstract:
A system and method of breakaway clutching in a device includes an arm having a first joint and a control unit coupled to the arm. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold. Movement of the first joint is more restricted in the first state than in the second state. The control unit further switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold. The first threshold is based on at least one first property of the arm. The speed threshold is based on at least one second property of the arm.
Abstract:
A cart for supporting one or more instruments during a computer-assisted remote procedure can comprise a base; a steering interface having a portion configured to be grasped by a user; a sensor mechanism configured to detect a force applied to the steering interface by a user; and a switch operable between an engaged position and a disengaged position. The cart may further include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and, on the condition that the switch is in the engaged position, to output a movement command based on the received input from the sensor mechanism. A driven wheel mounted to the base of the cart may be configured to impart motion to the cart in response to the movement command.
Abstract:
A cart for supporting one or more instruments for a computer-assisted, remote procedure can include a base and a support structure extending from the base and adjustable to different configurations, the support structure being configured to support one or more instruments to perform a remote procedure. The cart can further include a steering interface configured to be grasped by a user and a sensor mechanism configured to detect a force applied to the steering interface. The cart also can include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and information about a configuration of the support structure, the control module operably coupled to output a movement command based on the received input from the sensor mechanism and the information about the configuration of the support structure. A driven wheel may be mounted to the base and configured to impart wheeled motion to the cart in response to the movement command.
Abstract:
Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.