摘要:
The subject invention pertains to methods and apparatus for producing excitation for magnetic resonance imaging (MRI) from a plurality of local exciting elements such that each local exciting element's excitation is independent of the other local exciting elements' excitation. The methods and apparatus of the subject invention can be utilized in magnetic resonance imaging (MRI) and in magnetic resonance spectroscopy (MRS), where MRI produces a magnitude for each pixel that combines many frequency components, typically for magnitude images, and MRS produces a spectrum of outputs over a range of frequencies for each pixel, typically a spectral output. The subject method and apparatus can be utilized for exciting proton, and/or other imaging materials relating to spin magnetization, such as, but not limited to, phosphorous, carbon, and fluorine. In a specific embodiment, the subject invention achieves the independence of the local exciting elements' excitations via serial means, such that excitation is produced by each local exciting element at a different time than the other local exiting elements.
摘要:
The subject invention pertains to a technique and device that can isolate and separate resultant electromagnetic fields of volume coils at high frequency. In an embodiment, an RF shield can be used to isolate and separate resultant electromagnetic fields. In an embodiment, the shield can have a cylindrical shape that can form a partially closed volume in which an object to be imaged, or sample, can be inserted. In an embodiment, the RF shield can be part of a RF coil. In a specific embodiment, some parts of a volume coil can be inside a shield, and the other parts of a volume coil can be outside the shield. The shielding of some of the parts of a volume coil can create conductor patterns corresponding to the specific parts inside the shield and the specific parts outside the shield. In an embodiment, two or more conductor patterns can be placed in proximity to the same shield and either be driven independently, driven together, or act as receiving elements, combined or uncombined. This embodiment is advantageous because the combination of conductor patterns can be optimized by the flexibility of separating the fields of end-rings from the fields of leg currents.
摘要:
The subject invention pertains to a method and apparatus for Nuclear Magnetic Resonance (NMR) imaging. The subject method and apparatus are advantageous with respect to the use of RF coils for receiving signals in NMR scanners. The subject invention can utilize multiple coils to, for example, improve the signal to noise, increase the coverage area, and/or reduce the acquisition time. The use of multiple smaller surface or volume coils to receive NMR signals from the sample can increase the signal to noise ratio compared to a larger coil that has the same field of view and coverage area.
摘要:
The subject invention relates to a method and apparatus for synchronization of sensory stimulation with the reading experience. In a specific embodiment, audio and/or video stimulation can be provided to a reader. In additional embodiments, the sensory stimulation can include touch, smell, and/or taste. The reading experience can include, for example, the reading of books, magazines, textbooks, telephone directories, maps, resumes, brochures, newspapers, or other forms of written or printed materials, which can include, but are not limited to, words, photographs, illustrations, drawings, cartoons, and braille. The synchronization of sensory stimulation with the reading experience can involve providing sensory stimulation in relation to a reader's location or approximate location with respect to written or printed materials. In addition to sensory stimulation, other forms of interaction can be provided, such as interactive games, or interactive tests. A specific embodiment relates to a method and apparatus for synchronizing audio and/or video to a book as it is read.
摘要:
The subject invention pertains to a method and apparatus utilizing one or more spiral coils, such as spiral birdcage coils, spiral saddle coils, Helmholtz coil pairs, and other spiral volume and spiral surface coils. The spiral coils of the subject array can be substantially isolated from each other while covering nearly the same volume or surface. For cylindrical geometrics, isolation can be enhanced by having the rotation, or change in direction from one end of the coil to the other, be 2nπ, where n is an integer.