Abstract:
A process for the preparation of titanyl phthalocyanine Type X which comprises dissolving titanyl phthalocyanine Type I in a solution of trifluoroacetic acid and methylene chloride; adding the resultant solution to a solvent enabling precipitation of Type X titanyl phthalocyanine; separating the titanyl phthalocyanine Type X from the solution; followed by a first washing with an organic solvent and a second washing with water; and thereafter a solvent treatment with fluorobenzene.
Abstract:
Disclosed are various titanyl phthalocyanine polymorphs such as Type I, Type II, Type III, Type IV, Type Z-1, Type Z-2, and Type X, which phthalocyanines can be prepared by dissolving a titanyl phthalocyanine in a solution of trifluoroacetic acid and a chlorinated hydrocarbon. There is then added to the resulting solution a solvent that will enable precipitation of the titanyl phthalocyanine. Subsequently, the titanyl phthalocyanine product can be separated from the solution by, for example, filtration and the product titanyl phthalocyanine obtained can be washed to remove any residual solvent.
Abstract:
A process for the preparation of phthalocyanine composites which comprises adding a metal free phthalocyanine, a metal phthalocyanine, a metalloxy phthalocyanine or mixtures thereof to a solution of trifluoroacetic acid and a monohaloalkane; adding to the resulting mixture a titanyl phthalocyanine; adding the resulting solution to a mixture that will enable precipitation of said composite, and recovering the phthalocyanine composite precipitated product.
Abstract:
Disclosed is a process for preparing dianthranilate compounds which comprises (a) admixing reactants as follows: (1) a diol of the formula R1(OH)2, wherein R1 is an alkylene group having at least about 20 carbon atoms, and wherein the —OH groups are primary or secondary, (2) isatoic anhydride, present in an amount of at least, about 2 moles of isatoic anhydride per every one mole of diol, (3) a catalyst which is 1,4-diazabicyclo [2.2.2]octane, N,N,N′,N′-tetramethylethylene diamine, or a mixture thereof, said catalyst being present in an amount of at least about 0.2 mole of catalyst per every one mole of diol, and (4) a solvent; and (b) heating the mixture thus formed to form a dianthranilate compound of the formula Also disclosed is a process for preparing diazopyridone colorants which comprises (I) preparing a dianthranilate compound by the aforementioned method, (II) reacting the dianthranilate compound with nitrosylsulfuric acid to form a diazonium salt, and (III) reacting the, diazonium salt with a pyridone compound to form a diazopyridone compound.
Abstract:
Disclosed is a process for preparing a colorant of the formula wherein M is an atom or group of atoms capable of bonding to the central cavity of a phthalocyanine molecule, wherein axial ligands optionally can be attached to M, which comprises (a) reacting 3-n-pentadecylphenol with 4-nitrophthalonitrile in the presence of a base to form an alkylarylether adduct of phthalonitrile; and (b) reacting the alkylarylether adduct of phthalonitrile with either (i) a metal compound, or (ii) an ammonia-releasing compound in the presence of an alkanolamine solvent, or (iii) mixtures of (i) and (ii), to form the colorant.
Abstract:
A process for the preparation of hydroxygallium phthalocyanine and elements containing same which comprises the synthesis of a precursor halogallium phthalocyanine by the reaction of a diiminoisoindolene with gallium acetylacetonate; hydrolysis thereof to hydroxygallium phthalocyanine; and conversion of the resulting hydroxygallium phthalocyanine obtained to Type V hydroxygallium phthalocyanine by contacting said resulting hydroxygallium phthalocyanine with an organic solvent.
Abstract:
A process for the preparation of phthalocyanine composites which comprises adding a metal free phthalocyanine, a metal phthalocyanine, a metalloxy phthalocyanine or mixtures thereof to a solution of trifluoroacetic acid and a monohaloalkane; adding to the resulting mixture a titanyl phthalocyanine; adding the resulting solution to a mixture that will enable precipitation of said composite, and recovering the phthalocyanine composite precipitated product.
Abstract:
Disclosed is a process for forming secure images which comprises electrostatically charging an imaging member; imagewise exposing the charged member, thereby forming a latent image on the member; developing the latent image with a liquid developer comprising a liquid medium, a charge control additive, and toner particles comprising a colorant and a polymeric material; allowing the developed image to dry on the imaging member; contacting the portion of the imaging member with the dry developed image with a substantially transparent sheet having an adhesive material on the surface thereof in contact with the imaging member, thereby transferring the developed image from the imaging member to the substantially transparent sheet; contacting the adhesive surface of the substantially transparent sheet with the developed image with a paper sheet having a polymeric coating on the surface that is in contact with the substantially transparent sheet; and applying heat and pressure to the substantially transparent sheet and the paper sheet at a temperature and pressure sufficient to affix the image permanently to the paper. The resulting document is a paper sheet covered with the transparent sheet, with the developer material that forms the image being situated between the paper sheet and the transparent sheet. The disclosed process is generally useful for applications such as passport photographs, identification badges, banknote paper, and the like.
Abstract:
Disclosed is a compound comprising three or more moieties of the formula said moieties being bonded to a central atom, monomeric group of atoms, oligomer, or polymer. Also disclosed is a phase change ink composition comprising a phase change ink carrier and a colorant compound comprising three or more moieties of the formula said moieties being bonded to a central atom, monomeric group of atoms, oligomer, or polymer.