Abstract:
An OLED display panel is provided which can control the problem of shedding even in high definition panels. Metal wiring 5 which conducts with an earth line of a flexible printed substrate 15 is provided on a substrate 1. A display area 2 comprised from a plurality of OLED elements is provided at the center of the substrate 1 and four low resistance metal films 3 are provided along each of four edges of the display area 2 on a surface of insulation films 8, 10 at the periphery of the display area 2. Among these, one low resistance metal film 3 conducts with the metal wiring 5 via a contact 3a.
Abstract:
In an organic EL display device, a resistance of a cathode electrode of OLEDs is substantially reduced while maintaining a higher opening ratio of pixels as an entire display area. A reference power supply line is formed on a glass substrate, and receives a reference potential for driving the OLED. The OLED is formed on the glass substrate where the reference power supply line is formed, and has a structure in which a lower electrode, an organic material layer, and an upper electrode that is a cathode electrode common to plural pixels are laminated on each other in the order from the bottom. In some of the plural pixels, a cathode contact that penetrates through the organic material layer, and electrically connects the upper electrode to the reference power supply line is formed within an opening area corresponding to a W sub-pixel.
Abstract:
A method of manufacturing an organic electroluminescent display device of the invention includes the steps of: forming, on a mother substrate including display regions and terminal forming regions, an upper electrode in each of the display regions; and cutting the mother substrate along each border between the display regions to thereby divide the mother substrate into a plurality of individual pieces. The step of forming the upper electrode includes the step of depositing a material of the upper electrode in the display regions using a mask including a frame-shaped frame and stripe-shaped shielding portions that cover regions corresponding to the terminal forming regions. The shielding portion is fixed in a state where the shielding portion spans between facing sides of the frame and tension in one direction is applied, and extends only in the one direction inside an inner periphery of the frame in a plan view.
Abstract:
A display device which can be produced at reduced material cost and has a smaller peripheral frame area, and a method for producing the same, are provided. A display device includes a first substrate including a display area, which includes an organic EL light emitting layer; a second substrate located so as to face the first substrate; a dam member located along, and outside with respect to, a part of an outer edge of the display area, the dam member joining the first substrate and the second substrate to each other; and a filler filling a space between the first substrate and the second substrate while being in contact with the dam member.