Abstract:
An apparatus includes a generator for obtaining at least two lightwave carriers from a single lightwave source, at least two modulators for selectively varying the lightwave carriers according to respective data signals; and a coupler for combining the modulated lightwave carriers for optical transmission. The generator can be one of an optical carrier suppression or phase modulation. The apparatus can employ a filter for separating the lightwave carriers by a fixed wavelength spacing before selectively varying the lightwave carriers according to the respective data signals. In an exemplary embodiment of the invention, the respective data signals are two 50 Gbit/s differential quadrature phase key DQPSK signals, each 50 Gbit/s DQPSK signal including a first 25 Gbit/s data signal out of phase with a second 25 Gbit/s data signal for selectively varying a respective one of the two lightwave carriers, and the combined modulated lightwave carriers are a 100 Gbit/s DQPSK signal. Preferably, the apparatus includes a modulator for pulse shaping the lightwave carriers.
Abstract:
An apparatus includes multiple signal paths for optically converting an optical signal to multiples of the optical signal at different respective carrier frequencies for reducing interference between wireless transmissions of the multiples of the optical signal. Preferably, the converting includes a first modulator for modulating the optical signal into a first optical carrier and an initial first-order sideband signal with a frequency spacing twice that of the first optical carrier and a first interleaver for separating the first optical carrier and the initial first-order sideband signal. The converting also includes a second phase modulator for modulating the first optical carrier into a second optical carrier and a second first-order sideband signal with a frequency spacing twice that of the second optical carrier.
Abstract:
An optical wireless network includes an optical coupler for diverting received millimeter-wave signals comprised of an optical carrier and second order sidebands into multiple transmission paths; a downstream optical path being one of the multiple transmission paths and including an optical filter for filtering passing through the optical carrier with a single sideband, a converter for converting the optical carrier and single sideband to a corresponding electrical signal for amplification and broadcast transmission from an antenna; and an upstream path being one of the multiple transmission paths and having a filter for passing through the optical carrier only from the mm-wave signals and an intensity modulator driven by data received over the antenna to modulate the optical carrier for optical transmission to a receiving destination.
Abstract:
An optical transmitter including a dividing optical coupler for dividing a lightwave onto optical paths; a first optical modulator in a first of the optical paths and driven by an I component of a first signal and a I component of a second signal for modulating the lightwave, a DC bias of the first optical modulator being at a quadrature point; a second optical modulator in a second of the optical paths and driven by a Q component of the first signal and a Q component of the second signal for modulating the lightwave, a DC bias of the second optical modulator being at the quadrature point; a phase shifter for generating a 90 degree phase shift in the Q components of the first and second signals that are modulated by the second optical coupler; and a combining optical coupler for combining the modulated lightwave from the first optical coupler and the phase shifted Q components of the first and second signals for generating a quadrature amplitude modulated signal.
Abstract:
A method of generating a dark-RZ pulse in an optical communications system with a dual-arm modulator by setting a direct current bias on the modulator to a specific value such that an output optical power from the modulator achieves a maximum value when the RF signals on the first and second arms of the modulator are off and maintaining the direct current bias at the specific value and applying RF signals to the first and second arms of the modulator and delaying one of the RF signals applied to one of the first and second arms relative to the other of the RF signals such that a dark-RZ pulse is generated with a duty cycle based on the delay. Another aspect of the invention provides a method for generating dense wave division multiplexing (DWDM) optical mm-waves in an optical transmission system by phase modulated DWDM optical signal and applying the phase modulated DWDM optical signal to an input port of an optical interleaver, the optical interleaver having a specified bandwidth to suppress the optical carriers and convert the DWDM optical signal to DWDM optical mm-waves; and amplifying the DWDM optical mm-waves and transmitting the DWDM optical mm-waves over single mode fiber (SMF).
Abstract:
A method includes coupling an optical signal upconverted to a higher frequency and a digital signal having a bit rate similar to that of a subchannel of the upconverted optical signal, and obtaining, responsive to the coupling, a transmission signal with an optical carrier frequency carrying the digital signal and subchannels about the optical carrier frequency carrying the upconverted optical signal, the bit rate of the optical carrier being similar to that of the subchannels. In a preferred embodiment, the coupling includes electrically power coupling the upconverted optical signal with the digital signal, and modulating the coupled optical carrier frequency carrying the digital signal and subchannels about the optical carrier frequency carrying the upconverted optical signal.
Abstract:
A passive optical equalizer and a predistortion technique are employed to reduce pattern effect in optical signals which result from narrow filtering.
Abstract:
A method for generating a 400 Gb/s single channel optical signal from multiple modulated subchannels includes carving respective modulated subchannels into return-to-zero RZ modulated subchannels having non-overlapping peaks with intensity modulators having a duty cycle less than 50%, and combining the subchannels into a single channel signal aggregating the bit rate of each of the subchannels. The subchannels are combined with a flat top optical component for increased subsequent receiver sensitivity.
Abstract:
An optical transmitter includes a dividing optical coupler, a first optical modulator driven by an I component of a first signal and a I component of a second signal for modulating a lightwave, a DC bias of the first optical, a second optical modulator driven by a Q component of the first signal and a Q component of the second signal for modulating a lightwave, a DC bias of the second optical modulator, a phase shifter, and a combining optical coupler for combining the modulated lightwave from the first optical coupler and the phase shifted Q components of the first and second signals for generating a quadrature amplitude modulated signal.
Abstract:
Methods and systems for receiving an optical signal using cascaded frequency offset estimation. Coherently detecting an optical signal includes compensating for a coarse laser frequency offset between a transmitting laser and a local oscillator laser by determining a maximum phase error (MPE) in the optical signal, compensating for a residual laser frequency offset between the transmitting laser and the local oscillator laser, and decoding data stored in the optical signal.