Abstract:
A guide device with adjustable guide vanes is provided with a drive for the adjustable guide vanes, in which a cylindrical driving pin and an adjusting lever are provided each with one surface pair which are matched to one another and which slide on one another in operation when the guide vanes are being adjusted. To adjust the guide vanes, the adjusting ring is moved, by which the driving pin attached to the adjusting ring slides in an elongated groove of the adjusting lever and applies a force to the adjusting lever. This approach yields an economical and durable structure which is easy to install. This results in surface support with the corresponding low compressive loads per unit area and consequently greatly reduced wear.
Abstract:
Guide vanes are supported in a two-part or multipart housing (32, 33). Housing separation takes place radially in the region of the bearing point (25) of the vane shaft so that the separating joint (36) between the housing parts (32, 33) leads through the bearing openings (34) which are designed to hold the vane shafts. The completely round opening (34) leads to the bearing point of the vane shaft having large-area support in any position. Thus high surface pressures can be avoided.
Abstract:
The axial mounting with skewing compensation for a turbomachine has a fastening flange (1) and a bearing housing (2) which is in one piece with the latter and which is subdivided into a middle housing part (9) and an outer housing part (10) by means of at least one pair of slots (4,7) in two respective planes. The slots (4,7) are widened in a lobe-like manner at their ends, and these ends respectively limit at least one pair of webs (5,8) located diametrically opposite one another in the said planes. These webs (5,8) perform the function of rigid joints for damping angular deflections of the shaft which are caused by operating loads. The webs (5,8) of the two planes are offset relative to one another by 90.degree., generally by the amount of half their circumferential division.
Abstract:
The invention proposes a securing device (26) for securing a turbocharger (12) comprising a turbocharger casing (14) to a base (28). The securing device (26) has a first foot (30) which can be fixed in the base (28) and a second foot (32) which can be fixed in the base (28), it being possible for the two feet (30, 32) to be connected to the turbocharger casing (14) at an axial distance from one another. The second foot (32) has a casing connection region (34), which can be connected to the turbocharger casing (14), and a base connection region (36), which can be connected to the base (28). The casing connection region (34) is designed in the form of a partial circle arc or circle arc. An axial strut arrangement (38) connects the casing connection region (34) and the base connection region (36) and includes an angle α in the range from 0° to 60° with the base (28).
Abstract:
The cleaning device for the exhaust gas turbine comprises openings, which open out into the flow duct upstream of the nozzle ring, for injecting a cleaning liquid from the radially inner side into the annular flow duct, a cavity, which is connected to the openings, for distributing the cleaning liquid to the openings, and a supply line for supplying the cleaning liquid to the cavity. The cleaning device according to the invention provides a uniform distribution of water to nozzle ring or to the rotor blades of the turbine rotor wheel.
Abstract:
The fastening arrangement (26) for an impeller (22) on a shaft (14), in particular for an impeller (22) of a turbocharger on a turbocharger shaft (14), comprises a bush (34), which can be screwed onto a shaft journal (20) of the shaft (14), and a shaft-side hub extension (30) of the impeller (22) having a central recess (32), into which the bush (34) can be inserted in a frictional manner. The hub extension (30), at least in the region of its shaft-side end, is designed approximately in the form of a hollow cylinder. The fastening arrangement (26) also comprises a press sleeve (36) which can be frictionally connected radially on the outside to the hub extension (30).
Abstract:
The object of the invention is to provide an improved bearing support arrangement for rapidly rotating rotors, with which arrangement the service life of the bearing device is increased and both its fabrication costs and the expenditure on assembly are reduced. This is achieved according to the invention in that the bearing support arrangement (10) is of one-piece design. It comprises an outer flange (11) connected to the housing (2), a gimbal ring (12) and an inner bearing bush (13) which receives the bearing or the bearings (3). In each case a circumferential slot (14, 15) is formed both between the gimbal ring (12) and the outer flange (11) and between the gimbal ring (12) and the bearing bush (13). The gimbal ring (12) is respectively connected to the bearing bush (13) and to the outer flange (11) via two inner and two outer webs (16, 17) which interrupt the respective circumferential slot (14, 15). The annular gap (25) is formed between the bearing bush (13) and the housing (2) and is arranged axially offset with respect to the gimbal ring (12). At least one centering surface (22, 23) is arranged both on the outer flange (11) and on the housing (2), the said centering surfaces (22, 23) being arranged so as to correspond to one another and so as to be concentric with respect to the bearing/bearings (3).
Abstract:
A contact seal for turboengines is disclosed which is suitable for high circumferential speeds and high temperatures. The contact seal is of at least a two-part design and includes a thin carrier ring and a sealing ring. The sealing ring is constructed from a wear, oil, and heat resistant material, while the carrier ring includes an elastic material which is completely reversible even under high loads, and preferably is constructed of spring steel. The carrier ring has an inner fastening pan and an outer carrying part. The carrying part is positively connected to the sealing ring. The carrying part is designed to be inclined in the direction of the sealing face.
Abstract:
The present invention relates to a damping element for independent blades of a turbomachine in which the blades fastened in the rotor are connected together, preferably in the radially outer region, the connection between two blades consists of an elastically deformable platelet curved towards the center of the rotor, which platelet engages in retention features on the suction side of one blade and on the pressure side of a second, neighboring blade. The retention features on the blades can be either recesses or protruding lugs, in or on which the platelets are supported.