Abstract:
An ultrasound image evaluation apparatus includes: an image obtaining section that obtains a first ultrasound image generated based on ultrasounds, and a second ultrasound image generated before the first ultrasound image; an evaluation section that evaluates a distribution of motions at a part in the first ultrasound image, and a corresponding part of tissue in the second ultrasound image; and an output control section that performs control of outputting an evaluation result of the evaluation section.
Abstract:
An ultrasonic signal processing apparatus includes: a push wave transmitter that causes the ultrasonic probe to transmit a push wave for causing displacement in a subject; a detection wave transmitter that causes the ultrasonic probe to transmit a detection wave after the transmission of the push wave; a detection wave receiver that receives an ultrasonic wave reflected from the region of the interest by using the ultrasonic probe and converts the ultrasonic wave into a reception signal; a phasing adder that sets a plurality of observation points in the region of the interest and performs phasing addition for each of the plurality of the observation points to generate an acoustic line signal; and a mechanical property calculator that calculates a mechanical property of the subject in the region of the interest based on an acoustic line signal for each of the plurality of the observation point.
Abstract:
An ultrasound diagnostic device generates a frame reception signal by compounding sub-frame reception signals acquired from a subject body through an ultrasound probe. The sub-frame reception signals are generated through sub-scans composing an ultrasound scan. Between the sub-scans, a range in the scanned subject body differs due to a different ultrasound beam steering angle used. The diagnostic device includes a control circuit with a reception signal acquirer acquiring sub-frame reception signals, and a map creator creating sub-frame enhancement maps corresponding to the sub-frame reception signals, the maps created by calculating, for a pixel region reception signal, an enhancement amount according to a characteristic value calculated based on the pixel region reception signal. The diagnostic device also includes an enhancement-applied reception signal generator generating an enhancement-applied frame reception signal by compounding pixel region reception signals considering the enhancement amount included in at least one sub-frame enhancement map.
Abstract:
Ultrasound image processing method and ultrasound diagnostic device using the method, the method including: acquiring frame signals generated at different time points; generating, by using the frame signals, a first motion map composed of pixel areas each having a motion, the motion indicating an inter-frame signal change and calculated from corresponding pixel areas of the frame signals; holding a second motion map and creating a third motion map by performing a calculation using motions in the first and second motion maps; and adding emphasis to a frame signal by using the third motion map and generating an ultrasound image from the frame signal. In the method, after the calculation using motions, the third motion map is held in place of the second motion map.
Abstract:
An ultrasound diagnostic apparatus includes an ultrasound image acquirer, an evaluation target determiner, a disease progression score calculator, a selector, and a display controller. The ultrasound image acquirer acquires ultrasound image signals of a plurality of frames. The evaluation target determiner analyzes the ultrasound image signal of each frame and determines the frame to be an evaluation target frame when the ultrasound image signal includes a target image section depicting a joint. The disease progression score calculator calculates, for each evaluation target frame, a disease progression score quantifying disease activity using an ultrasound image signal of the target image section included in the ultrasound image signal of the evaluation target frame. The selector selects at least one disease progression score in accordance with a predetermined numerical process. The display controller controls the display to display the selected disease progression score and an ultrasound image of a corresponding frame.
Abstract:
An ultrasound diagnostic device generates a frame reception signal by compounding sub-frame reception signals acquired from a subject body through an ultrasound probe. The sub-frame reception signals are generated through sub-scans composing an ultrasound scan. Between the sub-scans, a range in the scanned subject body differs due to a different ultrasound beam steering angle used. The diagnostic device includes a control circuit with a reception signal acquirer acquiring sub-frame reception signals, and a map creator creating sub-frame enhancement maps corresponding to the sub-frame reception signals, the maps created by calculating, for a pixel region reception signal, an enhancement amount according to a characteristic value calculated based on the pixel region reception signal. The diagnostic device also includes an enhancement-applied reception signal generator generating an enhancement-applied frame reception signal by compounding pixel region reception signals considering the enhancement amount included in at least one sub-frame enhancement map.
Abstract:
An ultrasound diagnosis apparatus generates an ultrasound image of an inside of a subject on a basis of ultrasound signals which are reflected off at the inside of the subject and received. The apparatus includes a needle position specifier and a needle emphasis processor. With respect to each region in the ultrasound image, the needle position specifier obtains a deep region feature value relating to signal intensity in a region deeper than a region subject to judgment in relation to ultrasound signal distribution along an emission direction of an ultrasound emitted in a subject, and specifies a position of a puncture-needle which is inserted in the subject. The needle emphasis processor carries out a process for emphasizing the position of the puncture-needle which is specified in the ultrasound image.
Abstract:
An ultrasound image diagnostic apparatus includes, a transmitter to repeat alternating supply of first pulse signals and second pulse signals to the ultrasound probe, the second pulse signals being generated by polarity inversion of the first pulse signals; a receiver; a memory to store first sound ray data corresponding to the first pulse signals; an adder to add the stored first sound ray data and second sound ray data corresponding to the second pulse signals; a line-signal processor to generate fundamental line data and harmonic line data; a needle emphasizing signal processor to generate needle image data from the generated fundamental image data; a harmonic signal processor to generate harmonic image data; a synthesizer to combine the needle image data and the harmonic image data; and a display controller to display the synthesized image data.
Abstract:
An ultrasound diagnostic apparatus includes an ultrasound image acquirer, an evaluation target determiner, a disease progression score calculator, a selector, and a display controller. The ultrasound image acquirer acquires ultrasound image signals of a plurality of frames. The evaluation target determiner analyzes the ultrasound image signal of each frame and determines the frame to be an evaluation target frame when the ultrasound image signal includes a target image section depicting a joint. The disease progression score calculator calculates, for each evaluation target frame, a disease progression score quantifying disease activity using an ultrasound image signal of the target image section included in the ultrasound image signal of the evaluation target frame. The selector selects at least one disease progression score in accordance with a predetermined numerical process. The display controller controls the display to display the selected disease progression score and an ultrasound image of a corresponding frame.