摘要:
A chromogenic oxazine compound for the colorimetric detection of cyanide was designed. Indeed, the [1,3]oxazine ring of our compound opens to form a phenolate chromophore in response to cyanide. The heterocyclic com-pound may be comprised of fused benzooxazine and indoline rings: wherein R1 is an alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl), a substituted alkyl, a cycloalkyl (e.g., cyclopentyl, cyclohexyl), a substituted cycloalkyl, an aryl (e.g., phenyl), or a substituted aryl and R2 is a chromophore (e.g., nitroso, nitro, azo dyes). This quantitative chromogenic transformation permits the detection of micromolar concentrations of cyanide in water. Furthermore, our chromogenic oxazine is insensitive to the presence of large concentrations of fluoride, chloride, bromide or iodide anions, which are generally the principal interferents in the colorimetric detection of cyanide.
摘要:
We have designed a molecular switch based on the photoinduced opening and thermal closing of a [1,3]oxazine ring. A substituted [1,3]oxazine compound described as having a general (i.e., unsubstituted) structure with fused indoline and benzooxazine fragments such that they share a common bond in the [1,3]oxazine compound: (i) the bond connecting positions 1 and 2 of the indoline fragment and (ii) the bond connecting positions 2 and 3 of the benzooxazine fragment. Irradiation by light of suitable wave-length and intensity of this photochromic compound induces cleavage of a [C—O] bond of the [1,3]oxazine ring to form a phenolate chromophore. The photogenerated (e.g., colored) isomer may revert thermally to the starting (e.g., colorless) oxazine. Alternatively, the switch may be between isomers of the compound that absorb at different wavelengths. Reversible coloration of silica or polymeric materials and switching optical signals may involve many cycles of interconversion between different colored states. A colorless/colored state may be maintained by constant irradiation or chemical trapping.
摘要:
We have designed a molecular switch based on the photoinduced opening and thermal closing of a [1,3]oxazine ring. A substituted [1,3]oxazine compound described as having a general (i.e., unsubstituted) structure with fused indoline and benzooxazine fragments such that they share a common bond in the [1,3]oxazine compound: (i) the bond connecting positions 1 and 2 of the indoline fragment and (ii) the bond connecting positions 2 and 3 of the benzooxazine fragment. Irradiation by light of suitable wavelength and intensity of this photochromic compound induces cleavage of a [C—O] bond of the [1,3]oxazine ring to form a phenolate chromophore. The photogenerated (e.g., colored) isomer may revert thermally to the starting (e.g., colorless) oxazine. Alternatively, the switch may be between isomers of the compound that absorb at different wavelengths. Reversible coloration of silica or polymeric materials and switching optical signals may involve many cycles of interconversion between different colored states. A colorless/colored state may be maintained by constant irradiation or chemical trapping.
摘要:
A chromogenic oxazine compound for the colorimetric detection of cyanide was designed. Indeed, the [1,3]oxazine ring of our compound opens to form a phenolate chromophore in response to cyanide. The heterocyclic com-pound may be comprised of fused benzooxazine and indoline rings: wherein R1 is an alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl), a substituted alkyl, a cycloalkyl (e.g., cyclopentyl, cyclohexyl), a substituted cycloalkyl, an aryl (e.g., phenyl), or a substituted aryl and R2 is a chromophore (e.g., nitroso, nitro, azo dyes). This quantitative chromogenic transformation permits the detection of micromolar concentrations of cyanide in water. Furthermore, our chromogenic oxazine is insensitive to the presence of large concentrations of fluoride, chloride, bromide or iodide anions, which are generally the principal interferents in the colorimetric detection of cyanide.
摘要:
Heterocyclic compounds incorporating a [1,3]oxazine ring may be used to make chromogenic materials. These molecules switch from a colorless state to a colored form upon addition of either acid or base. In both instances, the [1,3]oxazine ring opens in response to the pH change forming an indolium cation, after the addition of acid, or a phenolate anion, after the addition of base. Alternatively, the switch may occur in response to a change in electrical current or potential or a change in temperature. Chromophores absorb in the visible region of the electromagnetic spectrum. Hence, their formation translates into the appearance of color. These processes are fully reversible and the original colorless state can be regenerated by switching the pH back to neutral. Thus, these halochromic compounds can be used to develop displays, filters, indicators, lenses, sensors, switches, or windows able to switch their color in response to pH changes.
摘要:
An optical storage medium 100 has a multilayer structure that includes a photochromic layer 110 having a thermally-stable photochromic compound, and a fluorescent layer 120 having a fluorescent compound. The photochromic compound is transformable between a first form and a second form. The fluorescent compound has an excitation wavelength centered in a region that is not substantially absorbed by the second form of the photochromic compound, and an emission wavelength that is absorbed by the first form and not absorbed by the second form.