Abstract:
The present invention relates to an anode for a secondary battery, comprising: a spiral anode having at least two anode wires which are parallel to each other and spirally twisted, each of the anode wires having an anode active material layer coated on the surface of a wire-type current collector; and a conductive layer formed to surround the spiral anode.The anode active material layer of the spirally-twisted has a thin thickness as compared with a single strand of an anode having the same anode active material. Therefore, Li ions can be easily diffused to enhance battery performance. Also, the anode of the present invention has a conductive layer on the surface thereof to prevent or alleviate the release of an anode active material which is caused by volume expansion during charging and discharging processes, and to solve the isolation of the anode active material.
Abstract:
The present invention relates to a cable-type secondary battery comprising a polymer electrolyte having a first electrolyte layer comprising a mixture of a first polymer and a first organic electrolyte solution in a weight ratio of 50:50 and 80:20; and a second electrolyte layer formed on at least one surface of the first electrolyte layer and comprising a mixture of a second polymer and a second organic electrolyte solution in a weight ratio of 20:80 and 50:50. Since the multiple-layered polymer electrode film of the present invention exhibits good characteristics in terms of both mechanical property and ionic conductivity, the cable-type secondary battery comprising the same according to the present invention has superior battery performances and flexibility, as well as good strength for withstanding external impact.
Abstract:
The present invention relates to an anode for a secondary battery, comprising: a spiral anode having at least two anode wires which are parallel to each other and spirally twisted, each of the anode wires having an anode active material layer coated on the surface of a wire-type current collector; and a conductive layer formed to surround the spiral anode.The anode active material layer of the spirally-twisted has a thin thickness as compared with a single strand of an anode having the same anode active material. Therefore, Li ions can be easily diffused to enhance battery performance. Also, the anode of the present invention has a conductive layer on the surface thereof to prevent or alleviate the release of an anode active material which is caused by volume expansion during charging and discharging processes, and to solve the isolation of the anode active material.