Abstract:
In one embodiment, a display device comprises: a substrate including an emissive area that emits light and a non-emissive area that does not emit light; a transistor over the substrate; a light emitting device over the transistor, the light emitting device including a first electrode, a light emitting layer on the first electrode, and a second electrode on the light emitting layer; a contact hole in the emissive area of the substrate, the contact hole positioned between the transistor and the light emitting device; and an auxiliary electrode in the contact hole, the auxiliary electrode electrically connecting together the first electrode of the light emitting device and the transistor.
Abstract:
An organic light emitting diode display device includes a first substrate; a conductive line formed on a first surface of the first substrate; an organic light emitting diode and an encapsulation layer on the conductive line; a second substrate on the encapsulation layer; a conductive pad connected to the conductive line and arranged in a through hole passing through the first substrate; and a driving circuit unit on a second surface opposite the first surface of the first substrate and connected to the conductive pad.
Abstract:
An organic light-emitting diode display device can include a plurality of sub-pixels disposed on a substrate, at least one transistor disposed at each of the plurality sub-pixels over the substrate, a first insulation layer disposed over the at least one transistor, and a light-emitting diode disposed at each of the plurality of sub-pixels over the first insulation layer. Further, the light-emitting diode includes a first electrode, a light-emitting layer, and a second electrode. Also, each of the plurality of sub-pixels includes a contact area and an emission area, the light-emitting diode is electrically connected to the at least one transistor in the contact area. The first insulation layer includes a recessed portion in the contact area.
Abstract:
An organic light-emitting diode display device can include a substrate including a first sub-pixel and a second sub-pixel; an interlayer insulation layer over the substrate and having different heights; and a first light-emitting diode disposed at the first sub-pixel and a second light-emitting diode disposed at the second sub-pixel over the substrate, wherein each of the first light-emitting diode or second light-emitting diode includes a first electrode, a light-emitting layer, and a second electrode, and the light-emitting layer includes a first stack, a charge generation layer, and a second stack, and wherein the second electrode of the first light-emitting diode is electrically connected to the charge generation layer of the first light-emitting diode, and the second electrode of the second light-emitting diode is separated from the charge generation layer of the second light-emitting diode.
Abstract:
An organic light-emitting display device and method of manufacturing the same are provided. An organic light-emitting display device includes: a substrate, an organic light-emitting device on the substrate, an encapsulation layer on the substrate and the organic light-emitting device, the encapsulation layer covering the organic light-emitting device, the encapsulation layer including an encapsulation hole, a black matrix covering the encapsulation layer, the black matrix including a black matrix hole over the encapsulation hole, and a color filter in the encapsulation hole and the black matrix hole.
Abstract:
Disclosed is an electroluminescent display device including a first pixel including a first sub pixel configured to emit first colored light, a second sub pixel configured to emit second colored light, and a third sub pixel configured to emit third colored light, a first electrode in the first sub pixel, an emission layer on the first electrode, a second electrode on the emission layer, and a first charge blocking layer provided below the second electrode and configured to prevent a light emission in the emission layer, wherein the first electrode is electrically connected with a driving thin film transistor in a first contact area provided in the first sub pixel, and the first charge blocking layer is overlapped with the first contact area.
Abstract:
A display device with an integrated touch screen, the display device including a first substrate, a first electrode on the first substrate, an organic light emitting layer on the first electrode, a second electrode on the organic light emitting layer and an encapsulation film on the second electrode, wherein the encapsulation film includes: a first touch sensing layer with a first touch electrode and a first insulating film disposed at a first layer, an insulating film disposed on the first touch sensing layer and a second touch sensing layer with a second touch electrode and a second insulating film disposed at a second layer, wherein the second touch sensing layer is disposed on the insulating film, wherein the first insulating film is disposed between the first touch electrode and another neighboring first touch electrode, and is not disposed on the first touch electrode.
Abstract:
An electroluminescent display device includes: an electroluminescent display device, including: a substrate including: a first subpixel, and a second subpixel, a respective first electrode in each of the first subpixel and the second subpixel on the substrate, a trench in a boundary between the first subpixel and the second subpixel on the substrate, an emission layer on the first electrode, and in the first subpixel, the second subpixel, and the boundary between the first subpixel and the second subpixel, at least some of the emission layer being noncontiguous in the trench, a pore below the emission layer inside the trench, an upper end of the pore being relatively higher than at least some of the emission layer, and a second electrode on the emission layer.
Abstract:
An electroluminescent display apparatus includes: a substrate including: first to third subpixels, a circuit device layer including a driving thin-film transistor respectively in each of the first to third subpixels on the substrate, a first electrode respectively in each of the first to third subpixels, a light-emitting layer on the first electrodes, and a second electrode on the light-emitting layer, wherein the first electrode of the first subpixel includes: a first lower electrode, and a first upper electrode, wherein the first electrode of the second subpixel includes: a second lower electrode, and a second upper electrode, wherein a distance between the first lower electrode and the first upper electrode differs from a distance between the second lower electrode and the second upper electrode, and wherein the first lower electrode and the first upper electrode are electrically connected to each other through a first contact electrode therebetween.
Abstract:
Disclosed is a display device with integrated touch screen capable of minimizing the increase of thickness caused by touch electrodes, and a method for fabricating the same, wherein the display device may include first electrode on a first substrate, an organic light emitting layer on the first electrode, a second electrode on the organic light emitting layer, and an encapsulation film on the second electrode, wherein the encapsulation film includes a touch sensing layer with a first touch electrode, a second touch electrode, and a first insulating film, the first touch electrode, the second touch electrode, and the first insulating film are coplanar, and the first insulating film is disposed between the first touch electrode and the second touch electrode.