Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between the first and second electrodes, a first light emitting stack formed between the charge generation layer and the first electrode, and a second light emitting stack formed between the charge generation layer and the second electrode, wherein a hole injection layer of a light emitting stack to realize blue color of the first and second light emitting stacks is formed by doping a host formed of hexaazatriphenylene (HAT-CN) with 0.5% to less than 10% of a dopant formed of a hole transporting material based on a volume of the hole injection layer.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between the first and second electrodes, a first light emitting stack formed between the charge generation layer and the first electrode, and a second light emitting stack formed between the charge generation layer and the second electrode, wherein a hole injection layer of a light emitting stack to realize blue color of the first and second light emitting stacks is formed by doping a host formed of hexaazatriphenylene (HAT-CN) with 0.5% to less than 10% of a dopant formed of a hole transporting material based on a volume of the hole injection layer.
Abstract:
An organic light emitting device containing a multilayer stack structure including n stacks between an anode and a cathode is described, wherein the respective stacks comprise a hole transport layer, a light emitting layer and an electron transport layer, an n-type charge generation layer and a p-type charge generation layer respectively provided between the different adjacent stacks, wherein the p-type charge generation layer comprises an indenofluorenedione derivative represented by Formula 1 or an imine derivative represented by Formula 2 or 3.
Abstract:
A tandem white organic light emitting device with improved efficiency, voltage and lifetime includes a first electrode and a second electrode opposing each other, a charge generation layer formed between the first electrode and the second electrode, a first stack disposed between the first electrode and the charge generation layer, the first stack including a first light emitting layer emitting blue light, and a second stack disposed between the charge generation layer and the second electrode, the second stack including a second light emitting layer including one or more hosts doped with a phosphorescent dopant emitting light having a longer wavelength than blue light, wherein the charge generation layer includes an n-type charge generation layer doped with a metal and a p-type charge generation layer made of an organic material.
Abstract:
A tandem white organic light emitting device with improved efficiency, voltage and lifetime includes a first electrode and a second electrode opposing each other, a charge generation layer formed between the first electrode and the second electrode, a first stack disposed between the first electrode and the charge generation layer, the first stack including a first light emitting layer emitting blue light, and a second stack disposed between the charge generation layer and the second electrode, the second stack including a second light emitting layer including one or more hosts doped with a phosphorescent dopant emitting light having a longer wavelength than blue light, wherein the charge generation layer includes an n-type charge generation layer doped with a metal and a p-type charge generation layer made of an organic material.