Abstract:
An automated sequencer for a microcontroller is provided which makes a CVD conversion process a hardware function. The sequencer controls the charging/discharging of the sensor and ADC sample-and-hold capacitances, as well as the voltage division process. It also initiates the ADC conversion, with an optional second conversion for greater resolution, or a differential conversion.
Abstract:
An ADC module includes an analog to digital converter coupled with an analog bus, wherein the an analog to digital converter comprises a main sample and hold capacitor; and a plurality of additional sample and hold capacitances which can be programmably coupled in parallel with said main sample and hold capacitance.
Abstract:
A combination of capacitive, mutual capacitive, and inductive proximity and touch sensing is used to detect the presence and nature of nearby objects to a wireless device. When the proximity of metal or a user is sensed the output power of a Wi-Fi module in the device is reduced so as to prevent harm to the user and/or the Wi-Fi transmitter amplifier circuits. Inductive sensors located at the four corners of the wireless device are used to detect metal, and capacitive sensors are used to detect a capacitance change or shift due to the presence of a user's hand, body or metal. In addition, the capacitive sensors may be located at the four corners of the device and can measure changes in the mutual capacitance coupling between these capacitive sensors.
Abstract:
An ADC module includes an analog to digital converter coupled with an analog bus, wherein the an analog to digital converter comprises a main sample and hold capacitor; and a plurality of additional sample and hold capacitances which can be programmably coupled in parallel with said main sample and hold capacitance.
Abstract:
An analog-to-digital (ADC) controller is used in combination with a digital processor of a microcontroller to control the operation of capacitance measurements using the capacitive voltage division (CVD) method. The ADC controller handles the CVD measurement process instead of the digital processor having to run additional program steps for controlling charging and discharging of a capacitive touch sensor and sample and hold capacitor, then coupling these two capacitors together, and measuring the resulting voltage charge thereon in determining the capacitance thereof. The ADC controller may be programmable and its programmable parameters stored in registers.
Abstract:
An automated sequencer for a microcontroller is provided which makes a CVD conversion process a hardware function. The sequencer controls the charging/discharging of the sensor and ADC sample-and-hold capacitances, as well as the voltage division process. It also initiates the ADC conversion, with an optional second conversion for greater resolution, or a differential conversion