Abstract:
Devices and methods for dynamic management of incident area deployable communications systems. Deployable base stations implement an ad hoc peer-to-peer or master-slave methods of determining activation states and transmission characteristics of plurality of deployable base stations at an incident area. The methods include receiving incident scene information from the plurality of deployable base stations and determining a coverage region for providing wireless communications coverage to one or more mobile communication devices in the incident area. The methods further include determining the activation states of the plurality of deployable base stations and determining transmission characteristics of the plurality of deployable base stations based on the incident scene information and the coverage region. One or more of the deployable base stations are activated in accordance with the determined transmission characteristics.
Abstract:
A communication system (200) is formed of a base station comprising a main base station receiver with a main base station antenna (202) and a secondary receiver with a secondary antenna (212). The secondary receiver detects interference to the main base station antenna (202) causing reduced communications range for communicating with subscriber units (204). The secondary receiver rotates a receiver null (228) of the secondary antenna (212) to reduce the interference in response thereto. The communication system (200) performs a voting decision that selects between the secondary receiver with rotated receiver null and the main base station receiver (104) with reduced communications range, to mitigate the interference to main base station antenna (102).
Abstract:
A method and system for assigning a frequency resource allocation to a communication device. The method includes determining a communication device model associated with the communication device. The method includes determining at least one interference emission threshold associated with a frequency range. The method includes receiving at least one communication device emission level based on at least the communication device model. The method includes determining, with a resource scheduler, a frequency resource allocation for the communication device to operate in a communication channel within the frequency range based on the at least one interference emission threshold and the at least one communication device emission level, wherein the at least one communication device emission level is not greater than the at least one interference emission threshold for the frequency range. The method further includes assigning the frequency resource allocation to the communication device.
Abstract:
Spectral efficiency is improved by assigning uplink channels according to expected receive signal levels at a serving base station. A first subscriber device detects a new call request indication, and then determines, as a function of its transmit power level and current location relative to the serving base station, an expected receive signal strength indication (RSSI) at its serving base station. Depending on whether it is determined that the expected RSSI is greater than or less than a RSSI threshold: one of (i) transmitting a call request to the serving base station requesting an assignment to a respective designated high-power or low-power channel for the new call and (ii) transmitting the new call on a respective pre-allocated high-power or low-power channel.