Abstract:
Electronic processing systems and methods for collaborating between vehicular threat detection appliances. One system includes a memory, a transceiver, an electronic processor, and a first vehicular 360-degree threat detection appliance that is physically coupled to a first vehicle. The electronic processor is configured to identify a portion of the first vehicular 360-degree threat detection appliance having an obstructed field-of-view. The electronic processor is also configured to detect a second vehicular 360-degree threat detection appliance that is physically coupled to a second vehicle and has an unobstructed field-of-view of the obstructed field-of-view. The electronic processor is further configured to transmit a request to the second vehicular 360-degree threat detection appliance to provide threat detection coverage for the first vehicle in a direction of the obstructed field-of-view. The electronic processor is also configured to temporarily disable the portion of the first vehicular 360-degree threat detection appliance that has the obstructed field-of-view.
Abstract:
Disclosed herein are methods and systems for object recognition and link integration in a composite video stream. One embodiment takes the form of a process that includes detecting an object of interest in a set of video frames. The process also includes tracking the movements of the detected object of interest across a subset of the video frames in the set of video frames. The process further includes generating a composite video stream from the video frames in the subset. The composite video stream shows the tracked movements of the detected object of interest without showing background data from the video frames in the subset. The process also includes outputting the generated composite video stream.
Abstract:
A first device in a group of devices is assigned a role of operating as a server node for the group of devices. The server node determines that an entity is associated with one device in the group of communication devices. The server node creates a token and associates the token with the entity. The server node also identifies a resource type to which the entity belongs, assigns ownership for the token to one device based on the device being associated with the entity and further based on one or more of: at least one incident allocation criterion; at least one entity allocation criterion; and at least one node allocation criterion. One device executes at least one predefined entity rule associated with the resource type based on ownership of the token assigned to the entity.
Abstract:
An event in a public safety (PS) network is recorded by mounting a video recording device for capturing images in a field of view (FOV) on a PS person, by tracking the PS person's point of view (POV) by mounting a motion sensor on the PS person's head for joint movement therewith to generate an output direction control signal indicative of a direction along which the POV is directed; by determining a context of the event in which the PS person is engaged by generating from a context sensor an output context signal indicative of the context of the event; and by automatically controlling operation of the video recording device based on the context and control signals by controlling one of direction of the FOV, angle of the FOV, size of the images, and resolution of the images.