Abstract:
A magnetic field sensing transducer which converts magnetic field intensity into a magnetostrictive strain and transfers that strain to an optical fiber employs a thin wall, hollow, cylindrical shell around which is wound a ribbon of an amorphous metallic magnetostrictive material. In another embodiment, the entire shell is formed by turns of the ribbon of magnetostrictive material. The optical fiber is coiled around the magnetostrictive cylinder formed by the wound ribbon and at both its ends, the optical fiber is affixed to the shell. The shell is covered at both its ends by caps and forms a thin wall resonator having three normal axisymmetric modes of vibration. The torsional vibratory mode is here of no interest because it does not appreciably couple to the optical fiber. Any one of the other two axisymmetric modes of vibration can be made dominant by selection of the appropriate length to radius ratio of the cylindrical shell. That property enables the transducer to be tuned to maximize its response to the applied dither field. The transducer is supported by a rod that extends centrally from the end caps. Strains induced by a magnetic field cause a modification in the phase of the light propagating through the optical fiber.
Abstract:
A signal processor is arranged to process polarized light signals obtained from a stress sensor of the type having a photoelastic element that responds to stress by causing a phase difference between components of the polarized light propagating through that element. The stress sensor provides two output beams, each of which has a different polarized component of the transmitted light. The signal processor employs a pair of photodetectors which respond to the intensities of the two polarized light beams by converting the polarized light into electrical signals. Those two electrical signals provide the inputs to a difference differentiator that provides an output proportional to the difference between the derivatives of the inputs. The two electrical output signals of the photodetectors are also applied as inputs to a multiplier whose output is related to the product of its inputs. The square root of the output of the multiplier is obtained from a square root device and is used as the divisor in a divider whose numerator is the output of the difference differentiator. The output of the divider is applied to the input of an integrator whose output is a measure of the stress imposed on the photoelastic element.