Abstract:
A method of configuration of combustion process control. The method includes providing a combustion system having a plurality of burner elements, a plurality of gas injection points and a controller. The gas injection points are configured to provide a support gas. One or more tasks for operation of the combustion system are determined. A plurality of groupings of the gas injection points are determined for each of the one or more tasks. An individual ranking for each of the plurality of groupings is determined in response to the one or more tasks. A composite ranking of injection points in response to the individual rankings and the controller is configured to operate the plurality of gas injection points in response to the composite ranking. A combustion system and a method for operating a combustion system are also disclosed.
Abstract:
An oxy-fuel burner that co-fires liquid fuel and gaseous fuel to create a more luminous flame. The characteristics of a liquid fuel spray and the gaseous fuel and primary oxidant gas flows, as well as the geometry of the burner is adapted to shroud the liquid fuel from the primary oxidant until it exits a precombustor and to prevent the liquid fuel from contacting the walls of the precombustor.
Abstract:
This disclosure includes a system and method of controlling fuel combustion including providing a system, measuring a property, and providing oxygen and fuel in response to the property. The system includes a furnace arranged and disposed to receive fuel and oxygen and combust the fuel and the oxygen to form a combustion fluid, a plurality of heat exchanger sections arranged and disposed to receive heat from the combustion fluid, and a plurality of oxygen injectors arranged and disposed to controllably provide oxygen to the combustion fluid to adjust composition of the combustion fluid and temperature of the combustion fluid. The property measured is selected from the group consisting of temperature of the combustion fluid, composition of the combustion fluid, temperature of the heat exchanger sections, and combinations thereof and is performed in close proximity to the oxygen injectors.
Abstract:
A burner includes a first oxidant conduit to transmit a first stream of an oxidant; a solid fuel conduit having an outtake and surrounding the first oxidant conduit, thereby forming a first annulus to transmit a mixture of a transport gas and particles of a solid fuel; a second oxidant conduit surrounding the solid fuel conduit, thereby forming a second annulus to transmit a second stream of the oxidant or an other oxidant; and means for segregating the mixture proximate the outtake into a lean fraction stream and a dense fraction stream. The first stream of the oxidant exiting the first oxidant conduit combines during combustion with the lean fraction stream, thereby forming an inner combustion zone adjacent the outtake, and the second stream of the oxidant, or the other oxidant, exiting the second oxidant conduit combines during combustion with the dense fraction stream, thereby forming an outer combustion zone.
Abstract:
A precombustor system to be used in conjunction with an oxy-fuel burner employing recycled flue gas is disclosed. A method of introducing streams into the precombustor to achieve desired improvements in flame properties is also disclosed.
Abstract:
A burner includes separate fuel and oxidant conduits. The fuel conduit has inlet, transitional, and outlet sections, and the oxidant conduit has inlet and outlet sections. The cross sectional flow area of the fuel transitional section varies from an initial cross sectional flow area at the fuel intake to a different cross sectional flow area at the fuel outtake, and the cross sectional flow area of the fuel outlet section is substantially uniform. At least some of the oxidant inlet section is spaced around substantially all of at least a portion of at least one of the fuel inlet, transitional, and outlet sections. The cross sectional flow area of the oxidant outlet section is less than or equal to the cross sectional flow area of the oxidant inlet section and is substantially uniform, and at least some of it is spaced around substantially all of at least a portion of the fuel outlet section.
Abstract:
A method for supplying heat to a melting furnace for forming a molten product using ash-containing fuels. A fuel having an ash component is introduced into a slagging chamber of a slagging combustor and at least partially combusted with a first oxidant mixture and a second oxidant mixture within the slagging chamber. Ash component is collected as a layer of molten slag in the slagging chamber. Slagging combustor gas effluent is passed from the slagging chamber of the slagging combustor into the combustion space of the melting furnace at high temperature to supply heat to form the molten product. Molten slag is withdrawn from the slagging chamber of the slagging combustor and may be selectively introduced into the melting furnace or not introduced into the melting furnace.
Abstract:
A burner includes separate fuel and oxidant conduits. The fuel conduit has inlet, transitional, and outlet sections, and the oxidant conduit has inlet and outlet sections. The cross sectional flow area of the fuel transitional section varies from an initial cross sectional flow area at the fuel intake to a different cross sectional flow area at the fuel outtake, and the cross sectional flow area of the fuel outlet section is substantially uniform. At least some of the oxidant inlet section is spaced around substantially all of at least a portion of at least one of the fuel inlet, transitional, and outlet sections. The cross sectional flow area of the oxidant outlet section is less than or equal to the cross sectional flow area of the oxidant inlet section and is substantially uniform, and at least some of it is spaced around substantially all of at least a portion of the fuel outlet section.
Abstract:
An oxy-fuel burner is set forth for providing combustion energy to a glass furnace via the mixing and combustion of a fuel stream and an oxidizer stream. The burner is divided into at least two sections, a substantially vertical section beginning at the bottom or feed end of the burner and a generally shorter, substantially horizontal section terminating at the opposite or discharge end of the burner. In a key embodiment, the vertical section of the burner protrudes into the furnace atmosphere through the underside of an air port, while the horizontal section is pointed toward the interior of the furnace. Depending on the number of burners installed, this allows from partial to full conversion of an air fuel furnace to an oxy-fuel furnace. Also, in a key embodiment, the burner includes an oxidant staging means to introduce oxidizer through a staging conduit running beneath and collateral with the outer conduit.
Abstract:
A precombustor system to be used in conjunction with an oxy-fuel burner employing recycled flue gas is disclosed. A method of introducing streams into the precombustor to achieve desired improvements in flame properties is also disclosed.