Abstract:
This disclosure provides various embodiments of implant tools and implant techniques utilizing those tools to implant components within extravascular locations. In one example, an implant tool for implanting a component within an extravascular location of a patient comprise a handle and a shaft adjacent the handle. The shaft has a proximal end, a distal end, and a body formed to define an open channel that extends from near the proximal end to the distal end. The open channel has a first width. The body has at least one flexible portion that defines an opening via which the open channel is accessed. The opening has a second width that is less than the first width. In another example, a sheath with an opening having the second width may be placed on the shaft of the implant tool instead of the implant tool having the at least one flexible portion.
Abstract:
Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
Abstract:
A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.