Abstract:
An electromagnetic actuator for operating a driven component includes first and second electromagnets having respective first and second pole faces oriented toward one another and defining a space therebetween; an armature disposed between the electromagnets and movable back and forth between the first and second pole faces in a direction of motion; a driving component attached to the armature for moving therewith as a unitary structure; and a resetting spring unit attached solely to the driving component or the driven component and exerting forces opposing movements of the armature caused by electromagnetic forces generated by the electromagnets. The resetting spring unit is in a relaxed state when the armature is in a mid position between the first and second pole faces and is in an armed state upon movement of the armature from the mid position in either direction. A mechanism connects the driving component with the driven component for effecting a transmission of moving forces from the driving component to the driven component to cause displacements of the driven component as a function of displacements of the armature and the driving component.
Abstract:
A method for producing a metal component which is made up of at least two partial elements with differing material properties is distinguished in that a first partial element made of a steel material, which can be tempered, is preassembled in a recess in a second partial element made of a magnetic iron material of low retentivity. A copper based solder is applied to the preassembled component at the recess in the transition area between the first partial element and the second partial element. Thereafter, the component is heated to a temperature which lies above the melting temperature of the solder. After the liquid solder has been distributed in a contact area of the two partial elements, the component is cooled. The component is then brought at least once to the tempering temperature of the steel material of the first partial element, is maintained at this temperature for a predetermined length of time and then is completely cooled.
Abstract:
A drive pulley having a hub and a pulley rim is provided, which are mounted in one another so as to be rotatable about a rotational axis, with at least two wound wire springs which are arranged in each case between the hub and the pulley rim in such a manner that they are wound around the rotational axis. In each case one end is supported in the direction of rotation with respect to the hub and the other end is supported in the direction of rotation with respect to the pulley rim and which form a non-supported free spring length between the ends, and which are installed in such a manner that they are pretensioned with respect to each other. At least one of the wire springs bears at one end against a bearing region of one of the parts—hub and pulley rim—and then has a radial distance with respect to a curved supporting face on this one of the parts—hub and pulley rim respectively—which distance increases over the circumference and is reduced progressively to zero over the circumference when the parts—hub and pulley rim—are twisted with respect to each other, while the bearing region is extended into the region of the supporting face 45 and the free spring length is shortened.
Abstract:
A driving disc with a hub and a disc rim which are rotatably supported inside one another, with at least two wound wire springs which are mounted substantially coaxially relative to the hub and disc rim and whose one end is secured in the direction of rotation relative to the hub and whose respective other end is secured in the direction or rotation relative to the disc rim.
Abstract:
The invention relates to an armature for an electromagnetic actuator, having a guide pin that is connected to an armature plate, characterized in that the armature plate (3) is formed by a frame element (4) that comprises soft-magnetic iron and is connected to the guide pin (2), and at least one plate element (5) that comprises a soft-magnetic material and is held in the frame element (4).
Abstract:
An electromagnetic actuator for operating a cylinder valve in an internal combustion engine includes first and second housings secured to one another. Each housing has a cavity and a through bore extending therefrom. First and second electromagnets are disposed in the cavity of the respective housings. Each electromagnet has a yoke, a coil and a pole face. The pole faces are oriented toward and spaced from one another, and a reciprocating armature is disposed between the pole faces. A spring which urges the armature away from the first electromagnet has an end oriented away from the armature. A support cap is axially insertable in the through bore of the first electromagnet and includes a cap base having an inner face supporting the spring end. A locking arrangement secures the support cap to the housing and has a component axially insertable in the through bore with the support cap.
Abstract:
An electromagnetic actuator for operating a driven component includes first and second electromagnets having respective first and second pole faces oriented toward one another and defining a space therebetween; an armature disposed in the space and movable back and forth between the first and second pole faces; a driving component attached to the armature for moving therewith as a unit; and a resetting spring assembly coupled to the armature and exerting forces opposing movements of the armature caused by electromagnetic forces generated by the electromagnets. The resetting spring assembly is in a relaxed state when the armature is in a mid position between the first and second pole faces. A coupling device connects the driving component with the driven component for effecting a transmission of pushing and pulling forces from the driving component to the driven component to cause displacements of the driven component as a function of displacements of the armature and the driving component. The coupling device includes a length-compensating arrangement between the driving and driven components.
Abstract:
An internal-combustion engine includes a cylinder head; a cylinder valve supported for reciprocating motion in the cylinder head to assume open and closed positions; and an electromagnetic actuator for operating the cylinder valve. The electromagnetic actuator includes a housing; and a first and a second electromagnet received in the housing and secured thereto at a fixed distance from one another. The first electromagnet has a first pole face and the second electromagnet has a second pole face oriented toward the first pole face. The actuator further has an armature positioned between the first and second pole faces for a reciprocating motion therebetween; return springs arranged for exerting oppositely oriented forces on the armature, whereby the armature executes reciprocating motion against a spring force; a connecting arrangement for coupling the armature to the stem of the cylinder valve; and a setting unit for displacing the housing relative to the cylinder valve.
Abstract:
The invention relates to a rotational vibration damper for a crankshaft of a piston engine. The rotational vibration damper comprises a hub which defines an axis of rotation, and a mass member which, via at least one spring element, is coupled to a hub and is able to rotationally vibrate freely relative to the hub. The mass member is annular in shape and is arranged coaxially relative to the hub, wherein the at least one spring element made of steel is provided in the form of a bendable spring.
Abstract:
A driving pulley is provided having a pulley rim and a hub which are rotatably supported inside one another, and having spring means which are mounted between the pulley rim and the hub and whose one end is fixed relative to the pulley rim and whose other end is fixed relative to the hub in the direction of rotation, wherein the spring means consist of spiral or helical springs which are effective in opposite directions.