Interactive retrieval and caching of multi-dimensional data using view
elements
    11.
    发明授权
    Interactive retrieval and caching of multi-dimensional data using view elements 失效
    使用视图元素交互检索和缓存多维数据

    公开(公告)号:US6014671A

    公开(公告)日:2000-01-11

    申请号:US79986

    申请日:1998-05-15

    IPC分类号: G06F17/30 G09G5/36

    摘要: An apparatus and method for representing and retrieving multi-dimensional data such as large satellite images. Images are stored in forms that can be rapidly browsed and retrieved by remote client applications in a drill-down or roll-up fashion. The data can be represented and retrieved using a view element data structure that includes node elements and transition elements between nodes. The data is decomposed (in space or spatial-frequency to construct a tree-based or graph-based data structure) into view elements. A set of view elements is selected, compressed and stored without adversely impacting image view extraction or generation speed. View elements are placed into the node elements of the data structure and the transition elements indicate the processing to generate other view elements in the data structure. In a server-side view construction, the view elements are selectively retrieved from storage, decompressed, and processed to generate the views of the data. In a client-side progressive view construction, the client caches the view elements and processes them in combination with view elements retrieved from the server to generate views of the data. The data reuse at the client reduces data transmission in drill-down or roll-up browsing. Data can be ingested, read and written in units of spatial blocks and decomposed into view elements using the spatial block units. Thus, the ingestion, decomposition, compression, and view retrieval for large images can be done using computer devices that have limited storage and processing capabilities.

    摘要翻译: 一种用于表示和检索诸如大卫星图像的多维数据的装置和方法。 图像以远程客户端应用程序以向下或向下滚动方式快速浏览和检索的形式存储。 可以使用包括节点元素和节点之间的过渡元素的视图元素数据结构来表示和检索数据。 数据被分解(在空间或空间频率上构建基于树或基于图形的数据结构)到视图元素中。 一组视图元素被选择,压缩和存储,而不会对图像视图提取或生成速度产生不利影响。 视图元素被放置在数据结构的节点元素中,过渡元素指示在数据结构中生成其他视图元素的处理。 在服务器侧视图结构中,从存储器,解压缩和处理中选择性地检索视图元素以生成数据的视图。 在客户端逐行视图构造中,客户端缓存视图元素并将其与从服务器检索的视图元素组合进行处理,以生成数据视图。 客户端的数据重用可以减少下拉列表或汇总浏览中的数据传输。 可以以空间块为单位摄取,读取和写入数据,并使用空间块单位将其分解为视图元素。 因此,对于大图像的摄取,分解,压缩和视图检索可以使用具有有限的存储和处理能力的计算机设备来完成。

    Dynamic optimization of multi-feature queries
    12.
    发明授权
    Dynamic optimization of multi-feature queries 有权
    多功能查询的动态优化

    公开(公告)号:US06917932B2

    公开(公告)日:2005-07-12

    申请号:US10137032

    申请日:2002-05-01

    IPC分类号: G06F17/30

    摘要: The present invention provides an elegant solution for processing multi-feature queries, which considers the differing access costs associated with each feature. Access cost is a critical factor in determining how individual features should be processed in terms of retrieving through sorted or random access, and, hence, in minimizing the overall query response time. The present invention operates dynamically during query processing and seeks to minimize the total query cost in terms of number of features retrieved and cost for access. It works by evaluating different combinations of feature access plans (sorted and random access) according to the number of retrieved features and forward access costs, and it selects the lowest cost plan. Experimental results on practical data show a significant speed-up in multi-features queries using the proposed solution.

    摘要翻译: 本发明提供了一种用于处理多特征查询的优雅解决方案,其考虑与每个特征相关联的不同的访问费用。 访问成本是确定如何处理通过分类或随机访问检索方面的个别特征的关键因素,因此在最小化整体查询响应时间方面。 本发明在查询处理期间动态地操作,并且寻求在检索的特征数量和访问成本方面使总查询成本最小化。 它通过根据检索到的特征数量和转发访问成本来评估特征访问计划(排序和随机访问)的不同组合,并且选择最低成本计划。 实际数据的实验结果表明,使用提出的解决方案,在多功能查询中显着加快。

    Multimedia content description framework
    13.
    发明授权
    Multimedia content description framework 有权
    多媒体内容描述框架

    公开(公告)号:US06564263B1

    公开(公告)日:2003-05-13

    申请号:US09456031

    申请日:1999-12-03

    IPC分类号: G06F700

    摘要: A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.

    摘要翻译: 提供了一种用于描述多媒体内容的框架以及采用本发明的内容描述方法的多个多媒体存储设备可以互操作的系统。 根据本发明的一种形式,内容描述框架是用于描述多媒体对象的流或聚合的描述方案(DS),其可以包括音频,图像,视频,文本,时间序列和各种其他模式。 该描述方案可以在特征,语义或元数据方面适应基本无限数量的描述符,并且促进流媒体或聚合多媒体对象的其他功能的基于内容的搜索,索引和检索。

    Multidimensional indexing structure for use with linear optimization queries

    公开(公告)号:US06529916B2

    公开(公告)日:2003-03-04

    申请号:US10047129

    申请日:2002-01-15

    IPC分类号: G06F1730

    摘要: Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.