Abstract:
Various embodiments are generally directed to techniques for generating effective visualizations of some or all of a storage cluster system. An apparatus includes a processor component; a rendering component to generate a visualization of at least a portion of a storage cluster system for presentation on a display, the visualization to comprise a depiction of an object that corresponds to a component of the storage cluster system; and an interpretation component to interpret received indications of operation of an input device to select the depicted object and to select a first time and a second time along a timeline presented on the display, and to generate a command to request information indicating a change in state of the object between the first and second times.
Abstract:
Various embodiments are generally directed to techniques for generating effective visualizations of some or all of a storage cluster system. An apparatus includes an API component of a visualization server to make an API available to be called by another device via a network to request information associated with an object that represents a component of a storage cluster system; and a translation component of the visualization server to, in response to a call to the API received via the network that requests information associated with the object, generate query instructions to search for a system entry corresponding to the storage cluster system within a system database and to search for the requested information within the system entry.
Abstract:
A distributed object store in a network storage system uses location-independent global object identifiers (IDs) for stored data objects. The global object ID enables a data object to be seamlessly moved from one location to another without affecting clients of the storage system, i.e., “transparent migration”. The global object ID can be part of a multilevel object handle, which also can include a location ID indicating the specific location at which the data object is stored, and a policy ID identifying a set of data management policies associated with the data object. The policy ID may be associated with the data object by a client of the storage system, for example when the client creates the object, thus allowing “inline” policy management. An object location subsystem (OLS) can be used to locate an object when a client request does not contain a valid location ID for the object.
Abstract:
Techniques for a data storage cluster and a method for maintaining and updating reliability data and reducing data communication between nodes, are disclosed herein. Each data object is written to a single data zone on a data node within the data storage cluster. Each data object includes one or more data chunks, and the data chunks of a data object are written to a data node in an append-only log format. When parity is determined for a reliability group including the data zone, there is no need to transmit data from other data nodes where the rest of data zones of the reliability group reside. Thus, inter-node data communication for determining reliability data is reduced.
Abstract:
Techniques for a data storage cluster and a method for maintaining and updating reliability data and reducing data communication between nodes, are disclosed herein. Each data object is written to a single data zone on a data node within the data storage cluster. Each data object includes one or more data chunks, and the data chunks of a data object are written to a data node in an append-only log format. When parity is determined for a reliability group including the data zone, there is no need to transmit data from other data nodes where the rest of data zones of the reliability group reside. Thus, inter-node data communication for determining reliability data is reduced.
Abstract:
A distributed object store in a network storage system uses location-independent global object identifiers (IDs) for stored data objects. The global object ID enables a data object to be seamlessly moved from one location to another without affecting clients of the storage system, i.e., “transparent migration”. The global object ID can be part of a multilevel object handle, which also can include a location ID indicating the specific location at which the data object is stored, and a policy ID identifying a set of data management policies associated with the data object. The policy ID may be associated with the data object by a client of the storage system, for example when the client creates the object, thus allowing “inline” policy management. An object location subsystem (OLS) can be used to locate an object when a client request does not contain a valid location ID for the object.
Abstract:
A distributed object store in a network storage system uses location-independent global object identifiers (IDs) for stored data objects. The global object ID enables a data object to be seamlessly moved from one location to another without affecting clients of the storage system, i.e., “transparent migration”. The global object ID can be part of a multilevel object handle, which also can include a location ID indicating the specific location at which the data object is stored, and a policy ID identifying a set of data management policies associated with the data object. The policy ID may be associated with the data object by a client of the storage system, for example when the client creates the object, thus allowing “inline” policy management. An object location subsystem (OLS) can be used to locate an object when a client request does not contain a valid location ID for the object.
Abstract:
Methods and system for securely capturing workloads at a live network for replaying at a test network. The disclosed system captures file system states and workloads of a live server at the live network. In one embodiment the captured data is anonymized to protect confidentiality of the data. A file system of a test server at the test network is mirrored from a captured state of the live server. An anonymized version of the captured workloads is replayed as a request to the test server. A lost or incomplete command is recreated from the states of the live server. An order of the commands during replay can be based on an order in the captured workload, or based on a causal relationship. Performance characteristics of the live network are determined based on the response to the replayed command.