Abstract:
A touch sensing circuit including a plurality of touch sensing channels is provided. Each of the touch sensing channels includes at least one operational amplifier circuit and a demodulating circuit. The operational amplifier circuit is configured to receive a touch sensing signal, and amplify the touch sensing signal. The operational amplifier circuit includes an operational amplifier. The operational amplifier has an inverting end, and the inverting end is coupled to a direct-current voltage. The demodulating circuit is coupled to the operational amplifier circuit. The demodulating circuit is configured to demodulate the amplified touch sensing signal by mixing the amplified touch sensing signal with a demodulating signal. In addition, a signal demodulating method is also provided.
Abstract:
A method of determining a touch event in a touch detection system includes: receiving at least one sensing signal corresponding to at least one driving signal configured to drive a touch panel; determining whether a touch event occurs by performing an initial digital operation on the at least one sensing signal; performing an entire determination on the at least one sensing signal after at least one of one or more predetermined conditions is determined to be satisfied, wherein one of the one or more predetermined conditions is that the touch event is determined to occur; and not performing the entire determination on the at least one sensing signal after each of the one or more predetermined conditions is determined to be unsatisfied.
Abstract:
A touch sensing circuit including a plurality of touch sensing channels is provided. Each of the touch sensing channels includes at least one operational amplifier circuit and a demodulating circuit. The operational amplifier circuit is configured to receive a touch sensing signal, and amplify the touch sensing signal. The operational amplifier circuit includes an operational amplifier. The operational amplifier has an inverting end, and the inverting end is coupled to a direct-current voltage. The demodulating circuit is coupled to the operational amplifier circuit. The demodulating circuit is configured to demodulate the amplified touch sensing signal by mixing the amplified touch sensing signal with a demodulating signal. A waveform of the demodulating signal includes a flat region. In addition, a signal demodulating method is also provided.
Abstract:
A carrier touch sensing system includes a demodulation circuit coupled to a touch panel, used for performing in-phase and quadrature demodulations to a plurality of carrier sensing signals to generate and store a plurality of phase delay information if the carrier touch sensing system operates in a phase calibration mode. The demodulation circuit is further used for performing in-phase demodulation to the plurality of carrier sensing signals according to the plurality of phase delay information to generate a plurality of touch signals if the carrier touch sensing system operates in a normal scan mode.
Abstract:
A noise detection device includes a drive circuit, a sense circuit and a controller. The drive circuit drives a plurality of drive lines having a first polarity pattern and a second polarity pattern, wherein an operation of the first polarity pattern and the second polarity pattern substantially equals zero over a predetermined time period. The sense circuit senses a plurality of sense signals from at least one sense line during the predetermined time period. The controller derives a magnitude of a noise signal from the at least one sense line according to the sense signals.
Abstract:
A noise detection device, system, and a method of detecting noise signals are disclosed. The noise detection device includes a drive circuit, a sense circuit and a controller. The drive circuit drives a plurality of drive lines having a first polarity pattern and a second polarity pattern, wherein an operation of the first polarity pattern and the second polarity pattern substantially equals zero over a predetermined time period. The sense circuit senses a plurality of sense signals from at least one sense line during the predetermined time period. The controller derives a magnitude of a noise signal from the at least one sense line according to the sense signals.
Abstract:
A phase compensation method for multi-scan in touch sensing system is provided. The phase compensation method includes the following steps. A plurality of carrier signals are received, and a demodulating operation is preformed on each of the carrier signals to obtain a first component signal and a second component signal of each of the carrier signals. An inverse matrix operation is respectively preformed on the first component signal and the second component signal both demodulated by the demodulating operation. A signal mixing operation is preformed on the first component signal and the second component signal both processed by the inverse matrix operation to obtain raw data of each of the carrier signals. Furthermore, a phase compensation circuit applying afore-said phase compensation method is also provided.
Abstract:
A phase compensation method for multi-scan in touch sensing system is provided. The phase compensation method includes the following steps. A plurality of carrier signals are received, and a demodulating operation is preformed on each of the carrier signals to obtain a first component signal and a second component signal of each of the carrier signals. An inverse matrix operation is respectively preformed on the first component signal and the second component signal both demodulated by the demodulating operation. A signal mixing operation is preformed on the first component signal and the second component signal both processed by the inverse matrix operation to obtain raw data of each of the carrier signals. Furthermore, a phase compensation circuit applying afore-said phase compensation method is also provided.
Abstract:
A method for processing sensing signals in a sensing system includes receiving at least one sensing signal; performing a first operation on the at least one sensing signal to determine whether the at least one sensing signal satisfies a first predetermined condition; performing a second operation on the at least one sensing signal after a second predetermined condition is determined to be satisfied, wherein the second predetermined condition comprises a condition that the first predetermined condition is determined to be satisfied, wherein the second operation provides more sensing information than the first operation; and not performing the second operation on the at least one sensing signal after a third predetermined condition is determined to be satisfied, wherein the third predetermined condition comprises a condition that the first predetermined condition is determined to be unsatisfied.
Abstract:
A touch sensing circuit including a plurality of touch sensing channels is provided. Each of the touch sensing channels includes at least one operational amplifier circuit and a demodulating circuit. The operational amplifier circuit is configured to receive a touch sensing signal, and amplify the touch sensing signal. The operational amplifier circuit includes an operational amplifier. The operational amplifier has an inverting end, and the inverting end is coupled to a direct-current voltage. The demodulating circuit is coupled to the operational amplifier circuit. The demodulating circuit is configured to demodulate the amplified touch sensing signal by mixing the amplified touch sensing signal with a demodulating signal. In addition, a signal demodulating method is also provided.