Abstract:
Provided are a method and apparatus for sinusoidal audio coding, which employs a tracking method for further effective coding of sinusoids extracted in the process of a sinusoidal analysis of parametric coding. The sinusoidal audio coding method includes: extracting sinusoids of a current frame by performing a sinusoidal analysis on an input audio signal; with respect to each of the extracted sinusoids, setting a mode selected from a birth mode in which a sinusoid is newly generated irrespective of sinusoids of a previous frame, a continuation mode in which the sinusoid is only one sinusoid continued from one of the sinusoids of the previous frame, and a branch mode in which the sinusoid is one of a plurality of sinusoids continued from one of the sinusoids of the previous frame; and coding the extracted sinusoids according to the selected mode. Accordingly, a plurality of sinusoids that can be continued from one previous track component are set to the continuation mode or the branch mode. Therefore, the number of bits of coded data is significantly reduced, compared with the case of the birth mode.
Abstract:
Provided is an audio encoding and decoding apparatus and method for improving a compression ratio while maintaining sound quality when sinusoidal waves of an audio signal are connected and encoded. The audio encoding method includes connecting sinusoidal waves of an input audio signal, converting a frequency of each of the connected sinusoidal waves to a psychoacoustic frequency, performing a first encoding operation for encoding the psychoacoustic frequency, performing a second encoding operation for encoding an amplitude of each of the connected sinusoidal waves, and outputting an encoded audio signal by mixing the encoding result of the first encoding operation and the encoding result of the second encoding operation.
Abstract:
Provided are a method and apparatus for encoding/decoding stereo audio. In the method for encoding stereo audio, stereo audio is encoded based on at least one of the phase difference between first and second channel audios and information on an angle made by a vector on the intensity of mono-audio and a vector on the intensity of the first channel audio or a vector on the intensity of the second channel audio. Thus, the number of encoded parameters is minimized so that a compression ratio in the encoding of the stereo audio is improved.
Abstract:
Encoding and decoding of residual signals are provided. In a method of encoding a residual signal of an audio signal, the residual signal is divided into a plurality of sections having different sizes, based on a change of the residual signal. Then, section division information representing information about the divided sections and section-by-section residual signal information representing characteristics of the sections of the residual signal are acquired. Thereafter, the residual signal is encoded based on the section division information and the section-by-section residual signal information.
Abstract:
Provided are a method and apparatus for encoding/decoding a media signal. The method of encoding a media signal includes: when harmonics exist in a sinusoid of a previous frame section, predicting a harmonic frequency of a current frame section that is to be encoded by using a harmonic frequency of the previous frame section, and generating a residual signal by using a difference between the predicted frequency and an actual harmonic frequency of the current frame section.
Abstract:
Provided are parametric audio encoding and decoding apparatuses and methods thereof. In the parametric audio encoding method, an audio signal is segmented into a plurality of segments. At least one sine wave is extracted from each of the segments, and the extracted sine waves are connected. It is determined whether an extracted sine wave is a birth sine wave. If the extracted sine wave is a birth sine wave, a bit stream is generated by encoding the phase of the birth sine wave on the basis of the frequency of the birth sine wave, wherein the number of bits allocated to encode the phase of the birth sine wave is adjusted according to the frequency of the birth sine wave.
Abstract:
An audio encoding method and apparatus, and an audio decoding method and apparatus, for processing a death sinusoid and a general continuation sinusoid. Using the unique characteristic of a death sinusoid, in that the death sinusoid has a tendency such that an amplitude component of the death sinusoid is less than that of a previous sinusoid, a method of adding an encoding syntax by distinguishing a general continuation sinusoid from a death sinusoid is provided. That is, when difference coding of the amplitude component of a death sinusoid is performed, the number of bits used when a negative number is coded is less than the number of bits used when a positive number is coded, in a Huffman table. By using this method, a bit rate in an entire coding decreases.
Abstract:
A method of and apparatus for parametric encoding and parametric decoding are provided. According to the method and apparatus, not all parameters for all component signals are generated and according to a time interval, parameters for some component signals are replaced by index information allowing similar previous time intervals to be found, thereby increasing encoding efficiency.
Abstract:
A method and apparatus for encoding an image, and a method and apparatus for decoding an image. The method of encoding an image includes: classifying pixels forming an input image into a first pixel group in which bit depth of original pixel values is maintained, and a second pixel group in which bit depth of original pixel values is changed; generating a changed input image by changing the bit depth of pixel values of pixels in the second pixel group; and performing motion prediction and compensation on the changed input image.
Abstract:
Provided are a method of adaptively determining a quantization step according to a masking effect in a psychoacoustics model and a method of encoding/decoding an audio signal by using the determined quantization step. The method of adaptively determining a quantization step includes calculating a first ratio value indicating an intensity of an input audio signal with respect to a masking threshold; and determining the maximum value of the quantization step in a range in which noise generated when the audio signal is quantized is masked, according to the first ratio value. According to the present invention, quantization noise may be removed and the number of bits required to encode an audio signal may be reduced, by using auditory characteristics of humans.