Abstract:
Techniques are provided for deduplicating encrypted data. For example, a device has data to store in an encrypted state within a remote data store. A key is used to encrypt the data to create encrypted data. The data is hashed to create hashed data and the encrypted data is hashed to create hashed encrypted data. A probabilistic data structure of the data is generated. The key is encrypted based upon the data to create an encrypted key. The encrypted data is transmitted to the remote data store, along with metadata comprising the hashed data, the hashed encrypted data, the probabilistic data structure, and the encrypted key. The metadata may be used to implement deduplication for subsequent requests, to store data within the remote data store, with respect to the encrypted data.
Abstract:
One or more techniques and/or systems are provided for migrating a dataset from a file storage system to an object storage system. That is, a snapshot of a file system may be received from the file storage system. The snapshot may comprise file data associated with a file of the file system. The file may be converted into an object using the file data. The object may be stored within a data constituent volume of the object storage system. A namespace volume, used to track objects, may be populated with a redirector that maps a front-end data path (e.g., a path used by clients to reference the object) to a back-end data path that specifies a path to the object within the data constituent volume. In this way, a dataset of one or more files may be migrated from the file storage system to the object storage system.
Abstract:
Systems and methods for reducing read application in a virtual storage system are provided. According to one embodiment, read amplification is reduced when AZCS compression is being utilized by avoiding restarting of a read process via a slow path via a RAID layer of the virtual storage system when a data block associated with a read request and obtained via a first fast path read has been found not to be compressed. Instead, a second fast path read may be performed to obtain the corresponding checksum. Alternatively, or additionally, heuristics may be used to predict the odds of the data block being compressed. For example, when information encoded within a PVBN of the data block that identifies the PVBN as being within a compressed AZCS zone has shown to be sufficiently/insufficiently predictive of the data block being compressed, then a flag may be set to enable/disable fast path reads.
Abstract:
Techniques are provided for deduplicating encrypted data. For example, a device has data to store in an encrypted state within a remote data store. A key is used to encrypt the data to create encrypted data. The data is hashed to create hashed data and the encrypted data is hashed to create hashed encrypted data. A probabilistic data structure of the data is generated. The key is encrypted based upon the data to create an encrypted key. The encrypted data is transmitted to the remote data store, along with metadata comprising the hashed data, the hashed encrypted data, the probabilistic data structure, and the encrypted key. The metadata may be used to implement deduplication for subsequent requests, to store data within the remote data store, with respect to the encrypted data.
Abstract:
Techniques are provided for deduplicating encrypted data. For example, a device has data to store in an encrypted state within a remote data store. A key is used to encrypt the data to create encrypted data. The data is hashed to create hashed data and the encrypted data is hashed to create hashed encrypted data. A probabilistic data structure of the data is generated. The key is encrypted based upon the data to create an encrypted key. The encrypted data is transmitted to the remote data store, along with metadata comprising the hashed data, the hashed encrypted data, the probabilistic data structure, and the encrypted key. The metadata may be used to implement deduplication for subsequent requests, to store data within the remote data store, with respect to the encrypted data.
Abstract:
Techniques are provided for aggregate inline deduplication and volume granularity encryption. For example, data that is exclusive to a volume of a tenant is encrypted using an exclusive encryption key accessible to the tenant. The exclusive encryption key of that tenant is inaccessible to other tenants. Shared data that has been deduplicated and shared between the volume and another volume of a different tenant is encrypted using a shared encryption key of the volume. The shared encryption key is made available to other tenants. In this way, data can be deduplicated across multiple volumes of different tenants of a storage environment, while maintaining security and data privacy at a volume level.
Abstract:
One or more techniques and/or systems are provided for migrating a dataset from a file storage system to an object storage system. That is, a snapshot of a file system may be received from the file storage system. The snapshot may comprise file data associated with a file of the file system. The file may be converted into an object using the file data. The object may be stored within a data constituent volume of the object storage system. A namespace volume, used to track objects, may be populated with a redirector that maps a front-end data path (e.g., a path used by clients to reference the object) to a back-end data path that specifies a path to the object within the data constituent volume. In this way, a dataset of one or more files may be migrated from the file storage system to the object storage system.
Abstract:
One or more techniques and/or systems are provided for migrating a dataset from a file storage system to an object storage system. That is, a snapshot of a file system may be received from the file storage system. The snapshot may comprise file data associated with a file of the file system. The file may be converted into an object using the file data. The object may be stored within a data constituent volume of the object storage system. A namespace volume, used to track objects, may be populated with a redirector that maps a front-end data path (e.g., a path used by clients to reference the object) to a back-end data path that specifies a path to the object within the data constituent volume. In this way, a dataset of one or more files may be migrated from the file storage system to the object storage system.