摘要:
An optical switch controller controls an optical interconnection network that variably connects at least one input data channel to a plurality of outputs channels via at least one switching element. An address reader module has at least one semiconductor optical amplifier optically processes an optical signal. The address reader module obtains information by reading a data tag from the input data channel, and outputs an address control signal based on the information. The address control signal can be used to control switching elements in the optical interconnection network.
摘要:
An optical circuit comprises a bistable optical waveguide (34) having a first and a second transmission state. The waveguide is more transmissive to light of a given wavelength in the second state than in the first state. A first light source (11) and a second light source (21) emit light of a first and second wavelength respectively and are coupled to the waveguide at one end. Selective transmission of a sufficient amount of light of the first wavelength through the waveguide “sets” the waveguide, causing it to switch from the first into the second state, whereas transmission of a sufficient amount of light of the second wavelength “resets” the waveguide causing it to switch back from the second into the first state. A sensing or reading (“test”) light source (36) is arranged at the other end of the waveguide to transmit a sensing light signal through the waveguide (34) in the opposite propagation direction to that of light of the first and second wavelengths. This sensing light source can be an external light source or an “internal” source provided by spontaneous emission in the waveguide. A sensor (38) is arranged to detect the amount of the sensing light signal transmitted through the waveguide (34). In this way the waveguide can be set into a given transmission state, which can be determined at a later time by measuring the amount of the sensing light signal transmitted. The optical circuit therefore exhibits a memory effect and may be used to produce an all-optical bistable logic circuit such as an optical latch or an optical flip-flip. Typically, the waveguide (34) is a doped optical fibre, such as an Erbium-Ytterbium (Er—Yb) doped fibre. Light of the first (set)/second (reset) wavelengths excites or de-excites respectively the dopant ions in the fibre thus tuning its transmission.
摘要:
Optical solutions to address and overcome the issues of superseding/replacing electrical interconnection networks have generally exploited some form of optical space switching. Such optical space switching architectures required multiple switching elements, leading to increased power consumption and footprint issues. Accordingly, it would be beneficial for new optical, e.g. fiber optic or integrated optical, interconnection architectures to address the traditional hierarchal time-division multiplexed (TDM) space based routing and interconnection to provide reduced latency, increased flexibility, lower cost, and lower power consumption. Accordingly, it would be beneficial to exploit networks operating in multiple domains by overlaying mode division multiplexing to provide increased throughput in bus, point-to-point networks, and multi-cast networks, for example, discretely or in combination with wavelength division multiplexing.
摘要:
An optical circuit comprises a bistable optical waveguide having first and second transmission states, and is more transmissive to light of a given wavelength in the second state than in the first state. First and second light sources emit light of first and second wavelengths, respectively, and are coupled to the waveguide at one end. Selectively transmitting a sufficient amount of light of the first wavelength through the waveguide switches the waveguide into the second state. Selectively transmitting a sufficient amount of light of the second wavelength through the waveguide switches it back to the first state. A sensing light source at the other end of the waveguide transmits a sensing light signal through the waveguide in the opposite propagation direction to that of light of the first and second wavelengths. A sensor detects the amount of the sensing light signal transmitted through the waveguide.