Abstract:
Printing apparatus 20 comprises a contact detection terminal 101, a cartridge detection circuit M10a, a for-senor terminal 104 and a sensor driving circuit M20, wherein the terminal 101 contacts to detection terminal 116 of ink cartridge 70 when the ink cartridge 70 is attached thereto, wherein the circuit M10a detects contact or non-contact between the terminal 116 and the terminal 101, wherein the terminal 104 outputs high voltage, wherein the circuit M20 controls voltage outputted from terminal 104. The cartridge detection circuit M10a also has a function of shorting detector for detecting contact between the contact detection terminal 101 and the for-senor terminal 104. In the case that the shorting is detected, the sensor driving circuit M20 redeces or interrupts the voltage outputted from terminal 104.
Abstract:
In response to an order from a user, a new expendable container is supplied in exchange for an expendable container possessed by the user. Price for ink supply is determined based on expendable-related information that indicates at least the model of the expendable container possessed by the user, thereby promoting refilling and recycling of expendable containers. Price can be discounted if there is remaining ink, whereby discarding of ink can be discouraged, thus contributing to protection of the environment.
Abstract:
The present invention provides a storage device that enables identification data to be readily rewritten and ensures normal completion of a data writing operation in a short time period. In the storage device of the invention, an ID comparator determines whether or not identification data transmitted from a host computer coincides with identification data stored in a memory array. In the case of coincidence, the ID comparator sends an access enable signal EN to an operation code decoder. The operation code decoder analyzes a write/read command, switches over a direction of data transfer with regard to the memory array based on a result of the analysis, and requires an I/O controller to change a high impedance setting of a signal line connecting with a data terminal DT. This series of processing allows access to an address in the memory array specified by a count on an address counter.
Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting between the at least one second terminal and the at least one third terminal and includes a third contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second contact portion, the plurality of the first contact portions, and the at least one third contact portion are arranged so as to form one or multiple rows. The at least one second contact portion is arranged at an end of one row among the one or multiple rows.
Abstract:
Control circuit 30 determines whether or not all ink cartridges CA1 through CA6 are attached in the home position based on cartridge out signals COO. Control circuit 30 carries out communication with memory devices 21 through 26 and determines the presence or absence of communication malfunctions. When a communication malfunction develops in one of memory devices 21 through 26, control circuit 30 determines if a communication malfunction is caused by ink cartridge 30 being detached and identifies detached ink cartridge CA using identifying information. When all of ink cartridges CA1 through CA6 are attached, control circuit 30 determines which of memory devices 21 through 26 has developed a communication malfunction and identifies ink cartridge CA in which a communication malfunction has developed using identifying information.
Abstract:
The present invention is a container for holding printing fluid material. The container includes a detector, a memory unit, a communication module, a first electric power generator, and a second electric power generator. The communication module is configured to transmit at least one of a result of the detection and the information regarding the container to the printing device. The first electric power generator is configured to generate a first electric power by utilizing the radio wave received from the printing device. The second electric power generator is configured to generate a second electric power from the first electric power. The second electric power is supplied to both the detector and the memory unit.
Abstract:
In a multi-level printer that enables a plurality of dots to be created in each pixel, the technique of the present invention reduces the unevenness of density and the roughness due to localization of dots in each pixel. The principle of the present invention is applicable to, for example, an ink jet printer that enables ink to be ejected successively in each pixel in the course of the main scan. Multiple tones are expressible in each pixel corresponding to the number of dots created therein. A dot formation pattern is set in such a manner that the center of all dots to be created in each pixel is substantially coincident with the center of the pixel. This arrangement effectively interferes with the localization of dots in each pixel and thereby reduces the unevenness of density and the roughness. In the case of bidirectional recording, this arrangement effectively prevents the misalignment of dot forming positions in a forward pass of the main scan with those in a backward pass of the main scan, thus attaining the high quality printing.
Abstract:
A memory device electrically connectable to a host circuit receives, from the host circuit, data including a first actual data to be written into the first memory area; acquires first parity data associated with the first actual data; generates second actual data that is a copy of the first actual data, and second parity that is a copy of the first parity data; writes the first actual data and the first parity data into the first memory area, and writes the second actual data and the second parity data into the second memory area; and reads the first actual data, the first parity data, the second actual data, and the second parity data from the data memory section for transmission to the host circuit.
Abstract:
A circuit board of an ink cartridge is provided with a plurality of terminals, with the contact portions of the plurality of terminals forming a plurality of lines. The contact portions of two terminals used for detecting installation are positioned in a first line, and the contact portion of a power terminal is positioned between the two terminals. The first line may be positioned to a leading side when the ink cartridge is moved in a prescribed direction to effect installation in a printer. Alternatively, the first line may be the line closest to an opening of an ink delivery port. Alternatively, the first line may be the line closest to an ink delivery needle.
Abstract:
A mounting detection circuit of a printing apparatus outputs a first mounting inspection signal to one of first terminals and outputs a second mounting inspection signal to one of second terminals thereby performing a mounting inspection for determining whether or not printing materials are mounted depending on whether or not second mounting response signal is received, and examines at least one of whether or not the second mounting response signal is influenced by the first mounting inspection signal and whether or not a first mounting response signal is influenced by the second mounting inspection signal thereby performing a leakage inspection for determining whether or not there is a leakage between the first and second terminals.