Abstract:
An organic light-emitting component includes a translucent substrate, on which an optical coupling-out layer is applied. A translucent electrode overlies the coupling-out layer and an organic functional layer stack having organic functional layers overlies the translucent electrode. The organic functional layer stack includes a first organic light-emitting layer on the translucent electrode and a second organic light-emitting layer on the first organic light-emitting layer. The first organic light-emitting layer includes arbitrarily arranged emitter molecules and the second organic light-emitting layer includes anisotropically oriented emitter molecules having an anisotropic molecular structure.
Abstract:
Various embodiments relate to an optoelectronic component, including a first electrode layer, a first organic functional layer structure on or over the first electrode layer, a nontransparent second electrode layer on or over the first organic functional layer structure, a second organic functional layer structure on or over the second electrode layer, and a third electrode layer on or over the second organic functional layer structure. The material for the second electrode layer is selected in such a way that a matt impression of at least one side of the optoelectronic component is imparted.
Abstract:
The invention relates to a radiation-emitting, organic component comprising a radiation-permeable carrier body (1) having a first surface (1a) on a top side of the carrier body (1), a radiation-permeable, structured layer (2) that is arranged on the first surface (1a) and covers same at least in places, a radiation-permeable first electrode (3) that is arranged on the side of the structured layer (2) facing away from the carrier body (1), a layer stack (10) that is arranged on the side of the first electrode (3) facing away from the structured layer (2) and comprises an organic, active region, and a second electrode (6), wherein the active region (10a) can be electrically contacted via the first electrode (3) and the second electrode (6), the structured layer (2) is different from the radiation-permeable carrier body (1), and the structured layer (2) comprises structures (2a) for refracting and/or scattering electromagnetic radiation generated in the active region (100) during operation.
Abstract:
A luminaire for general lighting includes an illuminant having a first light emission surface and a second light emission surface. The illuminant includes an organic, light-generating region. The first light emission surface and the second light emission surface are arranged at two mutually opposite main surfaces of the illuminant. A first light emerges at the first light emission surface during the operation of the illuminant, and a second light emerges at the second light emission surface during the operation of the illuminant. The first light and the second light differ from one another with regard to color and/or color temperature. The first light and the second light leave the luminaire in mutually different emission directions.
Abstract:
A luminaire for general lighting includes an illuminant having a first light emission surface and a second light emission surface. The illuminant includes an organic, light-generating region. The first light emission surface and the second light emission surface are arranged at two mutually opposite main surfaces of the illuminant. A first light emerges at the first light emission surface during the operation of the illuminant, and a second light emerges at the second light emission surface during the operation of the illuminant. The first light and the second light differ from one another with regard to color and/or color temperature. The first light and the second light leave the luminaire in mutually different emission directions.