摘要:
Systems and methods for increasing the power and resource efficiency of a mobile network device are presented herein. More particularly, described herein is a novel Tail Optimization Protocol (TOP) and/or other mechanisms, systems and methods for enabling cooperation between a mobile device and an associated radio access network to eliminate idle periods (e.g., tails) when possible. Various systems and methods described herein can leverage the ability of applications and/or their associated connections to accurately predict a long tail time, from which a mobile device can notify an associated cellular network on such an imminent tail in order to allow the cellular network to immediately release tail resources. Various other aspects provided herein realize TOP via fast dormancy and/or other similar notification mechanisms, which enable a handset or other device to notify a cellular network for immediate resource release.
摘要:
A packet trace is received. Inter-arrival times between the multiple packets in the packet trace are determined. An inter-arrival time in the inter-arrival times that is greater than a threshold is identified. An order number of the inter-arrival time is identified. A determination is made as to whether a size of each of at least a portion of the multiple packets is equal to a maximum segment size. When a determination is made that the size of each of at least a portion of the multiple packets is equal to the maximum segment size a size of the ICW as a product of the order number and the maximum segment size is returned.
摘要:
A packet trace is received. The packet trace is transformed into a sequence of pulse signals in a temporal domain. The sequence of pulse signals in the temporal domain is transformed into a sequence of pulse signals in a frequency domain. Peaks are detected within relevant frequency bands in the sequence of pulse signals in the frequency domain. A fundamental frequency is identified within the peaks. The fundamental frequency, which represents the TCP flow clock, is returned.
摘要:
A rating is provided for a computing application. Traffic data, power data, and/or network signaling load data is collected for a computing application and compared with other similar data. A rating for the computing application is provided based on the comparison.
摘要:
A packet trace is received. Inter-arrival times between the multiple packets in the packet trace are determined. An inter-arrival time in the inter-arrival times that is greater than a threshold is identified. An order number of the inter-arrival time is identified. A determination is made as to whether a size of each of at least a portion of the multiple packets is equal to a maximum segment size. When a determination is made that the size of each of at least a portion of the multiple packets is equal to the maximum segment size, a size of the ICW as a product of the order number and the maximum segment size is returned.
摘要:
A signature-based traffic classification method maps traffic into preselected classes of service (CoS). By analyzing a known corpus of data that clearly belongs to identified ones of the preselected classes of service, in a training session the method develops statistics about a chosen set of traffic features. In an analysis session, relative to traffic of the network where QoS treatments are desired (target network), the method obtains statistical information relative to the same chosen set of features for values of one or more predetermined traffic attributes that are associated with connections that are analyzed in the analysis session, yielding a statistical features signature of each of the values of the one or more attributes. A classification process then establishes a mapping between values of the one or more predetermined traffic attributes and the preselected classes of service, leading to the establishment of QoS treatment rules.
摘要:
A signature-based traffic classification method maps traffic into preselected classes of service (CoS). By analyzing a known corpus of data that clearly belongs to identified ones of the preselected classes of service, in a training session the method develops statistics about a chosen set of traffic features. In an analysis session, relative to traffic of the network where QoS treatments are desired (target network), the method obtains statistical information relative to the same chosen set of features for values of one or more predetermined traffic attributes that are associated with connections that are analyzed in the analysis session, yielding a statistical features signature of each of the values of the one or more attributes. A classification process then establishes a mapping between values of the one or more predetermined traffic attributes and the preselected classes of service, leading to the establishment of QoS treatment rules.
摘要:
The present invention relates to a method and system for the automated construction of application signatures. In one example, an approach for automatically constructing accurate signatures for individual applications, with minimal human involvement or application domain knowledge, is provided. Given a training data set containing the application traffic, the Automated Construction of Application Signatures (ACAS) system uses a combination of statistical, information theoretic and combinatorial optimization techniques, to derive application-layer signatures from the payload of packets, e.g., IP packets. Evaluations with a range of applications demonstrate that the derived signatures are very accurate and scale to identifying a large number of flows in real time on high-speed links.
摘要:
Disclosed are email server management methods and systems that protect the ability of the infrastructure of the email server to process legitimate emails in the presence of large spam volumes. During a period of server overload, priority classes of emails are identified, and emails are processed according to priority. In a typical embodiment, the server sends emails sequentially in a queue, and the queue has a limited capacity. When the server nears or reaches that capacity, the emails in the queue are analyzed to identify priority emails, and the priority emails are moved to the head of the queue.
摘要:
An application provisioning device may be used to manage a profile of a host and provide data corresponding to a selected application for installation at a host. A reverse firewall may use the profile of the host to determine whether to allow or block particular network communication from an application running on the host. An indication of a selected application may be received at the application provisioning device. Configuration information may also be received at the application provisioning device. The application provisioning server may request an update to the profile of a host and transmit such a request. The profile may be updated to reflect the configuration information and/or information of the selected application. Data corresponding to the selected application may be updated and transmitted to a host computer, where it may be installed. Therefore, the installed application running on the host may operate without being prematurely blocked by the reverse firewall.