Abstract:
A method, system, and computer program product for adaptive high-performance database redo log synchronization. The method commences upon performing a write operation of a redo log entry, the write operation concluding with an indication of completion of the write operation of the redo log entry. Any number of committing processes may be waiting for the indication of completion, and upon indication of completion, then (using a first synchronization mode) the processes or proxy measures the waiting time as experienced by the committing processes (e.g., while waiting for the indication of completion of the write operation of the redo log entry). In some cases a second synchronization mode would introduce less latency than the first synchronization mode, so the system changes to a second synchronization mode. The system can also change mode when a predicted second mode waiting time is smaller than the measured waiting time.
Abstract:
Techniques are provided for managing cached data objects in a mixed workload environment. In an embodiment, a system, log data is stored in one or more buffers. In response to receiving a request to perform a logical write, a first process writes a first portion of the log data to a log file in persistent storage. While the first portion of the log data is being written to the log file, a second process writes a second portion of the log data in the one or more buffers to the log file in persistent storage. In another embodiment, a request to perform a second logical write may be received before the first logical write completes. While the first log data is being written to the log file, one or more processes write second log data for the second logical write to the log file.
Abstract:
A container database stores redo records and logical timestamps for multiple pluggable databases. When it is detected that a first read-write instance of the pluggable database is opened and no other read-write instances of the pluggable database are open, offline range data associated with the pluggable database is updated. When it is detected that a second read-write instance of the pluggable database is closed, and the second read-write instance is the last open read-write instance, the offline range data associated with the pluggable database is updated. The pluggable database is restored to a logical timestamp associated with a restore request based on the offline range data.