摘要:
A chromatic dispersion compensating and dispersion slope compensating optical fiber comprises a central core having an index difference Δn1 with an outer optical cladding, a first buried inner cladding having an index difference Δn2 with the outer cladding, a ring having an index difference Δn3 with the outer cladding and a second buried inner cladding having an index difference Δn4 with the outer cladding. The index difference between the first buried inner cladding and the outer cladding Δn2 is less than or equal to −13.5.10−3 and the index difference between the second buried inner cladding and the outer cladding Δn4 is less than or equal to −3.10−3. The fiber has, for a wavelength of 1550 nm, a chromatic dispersion less than or equal to −50 ps/nm/km and a ratio of the chromatic dispersion over the chromatic dispersion slope DOS less than or equal to 70 nm. The second deeply buried inner cladding allows obtaining a low DOS value whilst maintaining acceptable optical characteristics.
摘要:
Disclosed are an improved system and a related method for compensating the chromatic dispersion of a given length of a transmission fiber over a given spectral band by employing at least two chromatic dispersion compensating fibers that, with respect to the slope of the slope of the chromatic dispersion (SSi), have values of opposite signs.
摘要:
Disclosed is a chromatic dispersion compensating optical fiber comprising a central core, an intermediate cladding having a width (r2−r1) of 2.0 microns or greater, and a depressed inner cladding having a refractive index difference Dn3 with the external optical cladding of −3.0×10−3 or lower. At a wavelength of 1550 nm, the optical fiber exhibits a positive chromatic dispersion of 21 ps/nm·km or higher and a ratio of mode radius to intermediate cladding radius of (W02/r2) of 0.7 or less. The present optical fiber has a good figure of merit value and limited bending and microbending losses. The optical fiber can be rolled up in a housing of reduced size in a chromatic dispersion compensating optical module having limited insertion losses and reduced polarization mode dispersion
摘要:
The present invention relates to a transmission optical fiber. The optical fiber includes, from its center to its periphery a central core, an intermediate cladding, and a depressed cladding. The optical fiber has an effective area (Seff) of at least about 120 μm2 at a wavelength of 1550 nm and an effective cutoff wavelength (λCeff) of less than 1600 nm. The optical fiber has an effective area of more than 120 μm2 with a cutoff wavelength limited to less than about 1600 nm without degradation of other optical parameters (e.g., attenuation losses and dispersion).
摘要:
An optical fiber having a core and an outer cladding, the core including from its center outward a central core having a radius and a refractive index difference with respect to the outer cladding, and a depressed inner cladding. The depressed inner cladding includes at least a first portion having a radius and a refractive index difference with respect to the outer cladding, the first portion preferably being adjacent to the central core, and a second portion adjacent to the first portion constituting a depressed trench having a radius, and a refractive index difference with respect to the outer cladding. The first portion of the inner cladding has a refractive index below the refractive index of the outer cladding, and the depressed trench has a refractive index that is lower than the refractive index of the first portion of the depressed inner cladding. The outer radius of the depressed inner cladding of the optical fiber is between 28 μm and 40 μm, the LP01 mode leakage losses at a wavelength of 1550 nm are less than 0.01 dB/km and the cable cut-off wavelength is less than 1530 nm.
摘要:
The present invention relates to a transmission optical fiber. The optical fiber includes, from its center to its periphery a central core, an intermediate cladding, and a depressed cladding. The optical fiber has an effective area (Seff) of at least about 120 μm2 at a wavelength of 1550 nm and an effective cutoff wavelength (λCeff) of less than 1600 nm. The optical fiber has an effective area of more than 120 μm2 with a cutoff wavelength limited to less than about 1600 nm without degradation of other optical parameters (e.g., attenuation losses and dispersion).
摘要:
Disclosed are an improved system and a related method for compensating the chromatic dispersion of a given length of a transmission fiber over a given spectral band by employing at least two chromatic dispersion compensating fibers that, with respect to the slope of the slope of the chromatic dispersion (SSi), have values of opposite signs.
摘要:
An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.
摘要:
An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.
摘要:
An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.