Abstract:
Disclosed is a system and methods for measuring electrochemical state of rechargeable batteries such as state of charge (SoC) and state of health (SoH). In various aspects, the system may include an inductive coil attached to the battery and a battery current sensor. Alternating current with a fixed frequency is applied to the coil to generate magnetic fields, and the magnetic fields induce losses including Eddy current loss and a loss related to battery currents. The system compensates for the effect of the loss related to battery currents for battery electrochemical state estimation. In another aspect, the system uses both coil-based measurement and ampere hour counting (AHC) measurement for SoC measurement. The system conducts coil-based SoC measurement only occasionally to reset the accumulated error of AHC-based SoC measurement. In yet another aspect, the system combines coil-based measurement with other measurements.
Abstract:
A distributed photodiode with FIR filtering function enabled by a lumped transmission line is provided. The distributed photodiode includes inductors, a plurality of photodiode segments, photodiode biasing components, and termination impedance. The electrical bandwidth due to the junction parasitic capacitance of the photodiode is increased as the parasitic capacitance is absorbed in the transmission line structure. Moreover, the delay elements inherent in the transmission line enable implementation of an analog finite impulse response (FIR) filter that has equalization capability to allow a customized photodiode frequency response compensation.
Abstract:
An apparatus and method of wireless position sensing determining the location of a receiver relative to a transmitter in a three dimensional space and correlating that location to and interacting with a display device. The system includes a transmitting coil having a known orientation with respect to the earth's coordinate system and configured to transmit a periodic signal during a positioning event, at least one receiver including a sensing unit for measuring the magnetic field vector produced by the transmitting coil and the orientation of the receiver with respect to the earth's coordinate system, and at least one computing unit configured to estimate a position and orientation of the receiver with respect to the transmitter's coordinate system using the measured magnetic field vector, the measured orientation with respect to the earth's coordinate system, and the known orientation of the transmitting coil with respect to the earth's coordinate system.
Abstract:
A positioning system for determining the location of a receiver relative to a transmitter. The system includes a transmitting coil having a known orientation with respect to the earth's coordinate system and configured to transmit a periodic signal during a positioning event, at least one receiver including a sensing unit for measuring the magnetic field vector produced by the transmitting coil and the orientation of the receiver with respect to the earth's coordinate system, and at least one computing unit configured to estimate a position and orientation of the receiver with respect to the transmitter's coordinate system using the measured magnetic field vector, the measured orientation with respect to the earth's coordinate system, and the known orientation of the transmitting coil with respect to the earth's coordinate system.
Abstract:
Disclosed is a system and methods for measuring electrochemical state of rechargeable batteries such as state of charge (SoC) and state of health (SoH). In various aspects, the system may include an inductive coil attached to the battery and a battery current sensor. Alternating current with a fixed frequency is applied to the coil to generate magnetic fields, and the magnetic fields induce losses including Eddy current loss and a loss related to battery currents. The system compensates for the effect of the loss related to battery currents for battery electrochemical state estimation. In another aspect, the system uses both coil-based measurement and ampere hour counting (AHC) measurement for SoC measurement. The system conducts coil-based SoC measurement only occasionally to reset the accumulated error of AHC-based SoC measurement. In yet another aspect, the system combines coil-based measurement with other measurements.
Abstract:
Systems, devices, kits, and methods for detecting and quantifying targeted compounds within a liquid (such as urine) are provided. Such systems, devices, and methods may be autonomous, noninvasive, and provide quick and accurate results. The systems and devices are at least partially disposable (single-use) and configured to be embedded within or applied to a conventional diaper or the like. Methods for using the systems and devices hereof include receiving a liquid to be tested within a portion of a disposable device, allowing the liquid to traverse through one or more channels defined within the device in a controlled fashion, reacting the liquid with one or more chemical reagents, using a sensing unit to collect photocurrent data regarding the chemical reach on(s), and wirelessly transmitting that data to a computing unit for storage and quantitative analysis.
Abstract:
A method of determining state of health (SoH) of a battery is disclosed which includes receiving a predetermined open circuit voltage (VOC) vs. a state of charge (SoC) characteristics for a pristine battery, establishing a single battery model including physical diffusion characteristics and electrical characteristics based on lumped parameters thereby modeling diffusion resistance and capacitance of particles in the electrodes of the battery as well as electrical characteristics based on electrical resistance and capacitance from one electrode assembly to another, thereby generating equations describing voltage at the associated double-layers, solving the double-layer equations, thereby generating solutions for the double-layer electrical characteristics, and establishing a relationship between the solved double-layer characteristics and the SoC, thereby determining a SoH of the battery based on said relationship.
Abstract:
A positioning system for determining the location of a receiver relative to a transmitter. The system includes a transmitting coil having a known orientation with respect to the earth's coordinate system and configured to transmit a periodic signal during a positioning event, at least one receiver including a sensing unit for measuring the magnetic field vector produced by the transmitting coil and the orientation of the receiver with respect to the earth's coordinate system, and at least one computing unit configured to estimate a position and orientation of the receiver with respect to the transmitter's coordinate system using the measured magnetic field vector, the measured orientation with respect to the earth's coordinate system, and the known orientation of the transmitting coil with respect to the earth's coordinate system.
Abstract:
Illustrative embodiments of systems and methods for wireless magnetic tracking are disclosed. In one illustrative embodiment, a wireless magnetic tracking system may include a plurality of transmitting coils each configured to generate a magnetic field when energized, an active transponder configured to simultaneously (i) obtain measurements of the magnetic field when one of the plurality of transmitting coils is energized and (ii) transmit a wireless signal containing data concerning the measurements, and a computing device configured to (i) cause each of the plurality of transmitting coils to be sequentially energized, (ii) receive the data concerning the measurements, and (iii) determine a position and an orientation of the active transponder relative to the plurality of transmitting coils in response to the data concerning the measurements.