Abstract:
In general, techniques are described for locating a user using an ultrasound mesh. The techniques may be performed by an interactive system comprising one or more processors. The processors may be configured to determine an amplitude of a first ultrasound signal emitted by one or more transducers and received by a microphone. This first ultrasound signal may be of a first frequency. The processors may then determine an amplitude of a second ultrasound signal emitted by the one or more transducers and received by the microphone. The second ultrasound signal may be of a second frequency different from the first frequency. The processors may be further configured to determine a location of the microphone relative to the one or more transducers based at least on the determined amplitude of the first ultrasound signal and the determined amplitude of the second ultrasound signal.
Abstract:
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
Abstract:
An accessory device having multiple speakers and/or microphones to perform a number of audio functions, for use with mobile devices, are provided. The audio transducers (e.g., microphones and/or speakers) may be housed in one or more extendable and/or rotationally adjustable arms. To compensate for the unwanted signal feedback between the speakers and microphones, acoustic echo cancellation may be implemented to determine the proper distance and relative location between the speakers and microphones. Acoustic echo cancellation removes the echo from voice communications to improve the quality of the sound. The removal of the unwanted signals captured by the microphones may be accomplished by characterizing the audio signal paths from the speakers to the microphones (speaker-to-microphone path distance profile), including the distance and relative location between the speakers and microphones. The optimal distance and relative location between the speakers and microphones is provided to the user to optimize performance.
Abstract:
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
Abstract:
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
Abstract:
A liveness-detection method and/or system is disclosed. A method of detecting liveness can comprise obtaining a single ultrasonic image of a biometric object. The single ultrasonic image can be subdivided into a plurality of overlapping sample blocks. Feature vectors can be extracted in a spatial domain and a frequency domain from each of the plurality of sample blocks. The feature vectors can be compared from each of the plurality of sample blocks to a classification model.
Abstract:
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
Abstract:
A fingerprint sensing apparatus includes a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may determine, according to the fingerprint sensor data, whether an object is positioned proximate a portion of the fingerprint sensor system. If the control system determines that an object is positioned proximate the portion of the fingerprint sensor system, the control system may determine whether the object is a finger or a non-finger object. The control system may determine whether the fingerprint sensor data includes fingerprint image information of at least an image quality threshold.
Abstract:
A fingerprint sensing apparatus may include a fingerprint sensor system and a control system. The fingerprint sensor system may include an ultrasonic sensor array. The control system may be capable of receiving fingerprint sensor data from the fingerprint sensor system and of determining whether an object is positioned proximate a portion of the fingerprint sensor system. The control system may be capable of determining an acoustic impedance of at least a portion of an object that is positioned proximate the fingerprint sensor system. The control system may be capable of determining whether the acoustic impedance is within an acoustic impedance range corresponding to that of skin and of determining, based at least in part on the acoustic impedance, whether the object is a finger.
Abstract:
Mobile communication devices, having multiple speakers and/or microphones to perform a number of audio functions, for use with mobile devices, are provided. The microphones may be housed within the communication device housing. To compensate for the unwanted signal feedback between the speakers and microphones, acoustic echo cancellation may be implemented to determine the proper distance and relative location between the speakers and microphones. Acoustic echo cancellation removes the echo from voice communications to improve the quality of the sound. The removal of the unwanted signals captured by the microphones may be accomplished by characterizing the audio signal paths from the speakers to the microphones (speaker-to-microphone path distance profile), including the distance and relative location between the speakers and microphones. The optimal distance and relative location between the speakers and microphones is provided to the user to optimize performance.