Double wall turbine gas turbine engine blade cooling configuration

    公开(公告)号:US10808548B2

    公开(公告)日:2020-10-20

    申请号:US15832478

    申请日:2017-12-05

    Abstract: An airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls extend in a radial direction to provide an exterior airfoil surface. A core cooling passage is arranged between the pressure and suction walls in a thickness direction and extends radially toward a tip. A skin passage is arranged in one of the pressure and suction side walls to form a hot side wall and a cold side wall. The hot side wall defines a portion of the exterior airfoil surface and the cold side wall defines a portion of the core passage. The core passage and the skin passage are configured to have a same direction of fluid flow. A resupply hole fluidly interconnects the core and skin passages. A centerline of the resupply hole is arranged at an acute angle relative to the direction of fluid flow in the core passage and is configured to provide a low turbulence flow region in the skin passage. The resupply hole has an exit at the skin passage and the exit has a diffuser.

    Cooling schemes for airfoils for gas turbine engines

    公开(公告)号:US11459897B2

    公开(公告)日:2022-10-04

    申请号:US16859181

    申请日:2020-04-27

    Abstract: Airfoils for gas turbine engines are described. The airfoils include a leading edge, a trailing edge, a pressure side exterior wall, and a suction side exterior wall. A plurality of cooling passages are formed within the airfoil. A plurality of first interior ribs extend from the pressure side exterior wall to the suction side exterior wall, and a plurality of second interior ribs extend from the suction side exterior wall toward the pressure side exterior wall and intersect with a first interior rib. At least one pressure side main body cooling passage is defined between the pressure side exterior wall and two first interior ribs of the plurality of first interior ribs and at least one suction side main body cooling passage is defined between the suction side exterior wall, a first interior rib, and a second interior rib.

    COMPONENTS FOR GAS TURBINE ENGINES
    17.
    发明申请

    公开(公告)号:US20200332667A1

    公开(公告)日:2020-10-22

    申请号:US16851720

    申请日:2020-04-17

    Abstract: Components for gas turbine engines are described. The components include an airfoil having a leading edge cavity with a baffle portion and a leading edge portion. A baffle is installed within the baffle portion and includes a first metering flow aperture. A first support element retention feature is located within the leading edge cavity. A first axial extending rib extends between an aft end of the cavity and a forward end proximate the first support element retention feature and is formed on an interior surface of the airfoil. A first axial extending flow channel extends along the first axial extending rib between an exterior surface of the baffle and an interior surface of the airfoil and the first metering flow aperture is located proximate the aft end of the first axial extending flow channel to generate a forward flowing cooling flow.

    Double wall turbine gas turbine engine blade cooling configuration

    公开(公告)号:US10781697B2

    公开(公告)日:2020-09-22

    申请号:US15832455

    申请日:2017-12-05

    Abstract: An airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls extend in a radial direction to provide an exterior airfoil surface. A core cooling passage is arranged between the pressure and suction walls in a thickness direction and extends radially toward a tip. A skin passage is arranged in one of the pressure and suction side walls to form a hot side wall at an outer surface and a cold side wall at an inner surface. The skin passage extends a height in the radial direction, a width in a width direction, and a thickness in a thickness direction. The thickness is less than the width. The hot side wall defines a portion of the exterior airfoil surface and the cold side wall defines a portion of the core passage at a core passage surface. The core passage and the skin passage are configured to have a same direction of fluid flow. A resupply hole fluidly interconnects the core and skin passages. A centerline of the resupply hole is arranged at an first angle relative to the direction of fluid flow in the core passage. The first angle lies in a plane parallel to the thickness direction. The centerline of the resupply hole is arranged at a second angle relative to the direction of fluid flow in the core passage. The second angle lies in a plane parallel to the width direction. The second angle is at an acute angle. The first and second angles are configured to provide a low turbulence flow region in the skin passage.

Patent Agency Ranking