Abstract:
The invention relates to a ship, in particular a freight ship, comprising an outer wall and a gangway for embarking and disembarking the ship, which can be moved backwards and forwards between an embarking/disembarking position and a stored position when the ship is being driven. The invention also relates to a ship in which the gangway comprises a base having a lower surface which, when said gangway is in the stored position, is flush with the surface of the outer wall. The invention also relates to a gangway for embarking and disembarking a ship, which is embodied according to the claimed invention for use on a ship.
Abstract:
The present invention concerns a Magnus rotor comprising a drive and a control means which controls the drive in such a way that the Magnus rotor attains a peripheral speed which is greater than the mean wind speed by a factor λ. In addition the present invention concerns a method of operating a Magnus rotor comprising a drive which causes the Magnus rotor to rotate, and a control means, as well as a ship. In order better to utilize the action of the Magnus rotor than occurs in the state of the art, λ is greater than 4. In that respect the present invention is based on the realization that the assumption that, above a high-speed factor of four, there would no longer be a significant increase in the lift coefficient, which above all is in relation to the drive power to be used, is based on a technical prejudice. It was possible to empirically ascertain that an increase in the high-speed factor leads to a significantly higher lift coefficient. Accordingly there is also a higher power output from the Magnus rotor.
Abstract:
There is provided a turbine for a hydroelectric power plant comprising a hub, a plurality of turbine blades provided on the hub, a pitch angle adjusting unit coupled to the turbine blades for adjusting the pitch angle of the turbine blades, a double-acting hydraulic cylinder and a piston rod connected thereto. The piston rod is coupled to the pitch angle adjusting unit in such a way that the pitch angle adjusting unit performs a rotational movement when the piston rod is moved in the longitudinal direction. The double-acting hydraulic cylinder is provided in a hydraulic chamber coupled by way of a first and a second hydraulic line so that the double-acting hydraulic cylinder is displaceable by feed of a hydraulic fluid through the first or second hydraulic line and thus leads to adjustment of the pitch angle of the turbine blades by way of the coupling to the piston rod and the pitch angle adjusting unit.
Abstract:
Various embodiments provide a Magnus rotor having a carrier arranged in the interior of the Magnus rotor, a rotor which rotates about the carrier in operation of the Magnus rotor, a plate which horizontally closes off the rotor, and a bearing which carries the rotor on the carrier. The rotor has at least one opening in the plate. The carrier has at least one fixing point for lifting the Magnus rotor by means of at least one fixing means and a lifting apparatus.
Abstract:
The invention relates to a ship, in particular a freight ship, comprising an outer wall and a gangway for embarking and disembarking the ship, which can be moved backwards and forwards between an embarking/disembarking position and a stored position when the ship is being driven. The invention also relates to a ship in which the gangway comprises a base having a lower surface which, when said gangway is in the stored position, is flush with the surface of the outer wall. The invention also relates to a gangway for embarking and disembarking a ship, which is embodied according to the claimed invention for use on a ship.
Abstract:
There is provided a turbine for a hydroelectric power plant comprising a hub, a plurality of turbine blades provided on the hub, a pitch angle adjusting unit coupled to the turbine blades for adjusting the pitch angle of the turbine blades, a double-acting hydraulic cylinder and a piston rod connected thereto. The piston rod is coupled to the pitch angle adjusting unit in such a way that the pitch angle adjusting unit performs a rotational movement when the piston rod is moved in the longitudinal direction. The double-acting hydraulic cylinder is provided in a hydraulic chamber coupled by way of a first and a second hydraulic line so that the double-acting hydraulic cylinder is displaceable by feed of a hydraulic fluid through the first or second hydraulic line and thus leads to adjustment of the pitch angle of the turbine blades by way of the coupling to the piston rod and the pitch angle adjusting unit.
Abstract:
There is provided a ship, in particular a cargo ship. It has a plurality of Magnus rotors, wherein associated with each of the plurality of Magnus rotors is an individually actuable electric motor (M) for rotating the Magnus rotor, wherein associated with each electric motor (M) is a converter (U) for controlling the rotary speed and/or the rotary direction of the electric motor (M).
Abstract:
The invention relates to a ship, in particular a cargo ship, having a power supply system. The invention relates in particular to a ship having a plurality of diesel electric systems for providing electrical power that are disposed within the ship, wherein a plurality of diesel electric systems are each associated with a common opening for removing the diesel electric systems. The invention further relates to a power supply system for a ship and to a method for controlling the power supply system of a ship.
Abstract:
The present invention concerns a Magnus rotor comprising a guide roller which is arranged at the lower outer periphery of the Magnus rotor and which bears against the Magnus rotor in play-free relationship, a walkway surface arranged beneath the guide roller, and a cover which covers the guide roller and the walkway surface. In an opened condition the cover exposes the guide roller and the walkway surface so that a person on the walkway surface can perform working operations at the guide roller.
Abstract:
The invention concerns a ship comprising at least one motor for driving the ship and at least one crane. To lift the motor at least one crane can be brought into engagement with the at least one motor through at least one closable opening. The invention further concerns a ship drive for driving a ship as well as a method of exchanging ship motors arranged within a ship for driving the ship together with peripheral devices. The invention further concerns the use of a wind power installation generator.