Abstract:
A system and method that allows a user to view objects in a three-dimensional environment, where one or more of the objects have a data display (e.g., a data billboard, etc.) that shows data about the object. To enhance user experience and to provide relevant contextual data as the user navigates through the three-dimensional environment, the system calculates a location for the user and a location for each object and determines if a relationship between the user frame of reference and each object location satisfies a first criterion. If the first criterion is satisfied, the system is configured to move the data display to the bottom of a viewing area of the three-dimensional environment (e.g. docking the data display to the bottom of the viewing area, etc.). The system may also arrange the data displays in the same order as the objects are perceived by the user in the three-dimensional environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment.
Abstract:
A system and method that allows a user to view objects in a three-dimensional environment, where one or more of the objects have a data display (e.g., a data billboard, etc.) that shows data about the object. To enhance user experience and to provide relevant contextual data as the user navigates through the three-dimensional environment, the system calculates a location for the user and a location for each object and determines if a relationship between the user frame of reference and each object location satisfies a first criterion. If the first criterion is satisfied, the system is configured to move the data display to the bottom of a viewing area of the three-dimensional environment (e.g. docking the data display to the bottom of the viewing area, etc.). The system may also arrange the data displays in the same order as the objects are perceived by the user in the three-dimensional environment.