Abstract:
Embodiments described herein include a processing system for a display device comprising an integrated capacitive sensing device that includes at least one input/output pad that is selectable between providing source signals to the display device and operating a sensor electrode for capacitive sensing. Other embodiments include a display device having a capacitive sensing device, an input device having an integrated display and capacitive sensing device, and a method for operating an integrated display and capacitive sensing device.
Abstract:
Embodiments include a method (as well as an input device and processing system) that includes driving a display signal onto at least one of a plurality of display electrodes for updating a display, and driving an input sensing signal onto at least one of a plurality of sensor electrodes, where driving the input sensing and driving the display signal at least partially overlap in time. The method further includes receiving, using a coupling electrode disposed proximate to the at least one display electrode, a coupling signal that represents an effect of a signal on at least one of the display electrodes, on a signal on at least one of the sensor electrodes, acquiring resulting signals with at least one of the sensor electrodes, and adjusting the resulting signals based on the coupling signal.
Abstract:
Embodiments described herein mitigate the effect of a coupling capacitance between a sensor electrode in a touch sensor and a display electrode in a display screen. An input device, which includes the touch sensor and display screen, may transmit a guarding signal on the display electrodes when performing capacitive sensing. In one embodiment, the guarding signal may have similar characteristics as a modulated signal (e.g., similar amplitude and/or phase) driven on the sensor electrode to detect interaction between the input device and an input object. By driving a guarding signal that is similar to the modulated signal onto the display electrodes, the voltage difference between the sensor electrode and display electrode remains the same. Accordingly, the coupling capacitance between the sensor electrode and the display electrode does not affect a capacitance measurement used to detect the user interaction.
Abstract:
Embodiments of the disclosure generally provide an integrated control system having an integrated controller that is configured to provide both display updating signals to a display device and a capacitive sensing signal to a sensor electrode that is disposed within the integrated input device. The internal and/or external signal routing configurations described herein can be adapted to reduce signal routing complexity typically found in conventional devices and reduce the effect of electrical interference created by the capacitive coupling formed between the display routing, capacitive sensing routing and/or other components within the integrated control system. Embodiments can also be used to reduce electromagnetic interference (EMI) on the display and touch sensing signals received, transmitted and processed within the integrated control system.
Abstract:
Embodiments described herein include an input device that drives an equalization signal onto an electrode that may be capacitively coupled to a sensor electrode used for capacitive sensing. The equalization signal may include a plurality of pulses that are synchronized to be out of phase with a capacitive sensing signal driven on the sensor electrode. For example, as the capacitive sensing signal transitions from a low voltage to a high voltage, the equalization signal transitions from a high voltage to a low voltage. Doing so increases the voltage difference between the electrodes and increases the slew rate of the capacitive sensing signal. In further embodiments, where the input device includes a display device, the equalization signal may be driven onto display electrodes that are used when updating a display.
Abstract:
Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.
Abstract:
Embodiments described herein mitigate the effect of a coupling capacitance between a sensor electrode in a touch sensor and a display electrode in a display screen. An input device, which includes the touch sensor and display screen, may transmit a guarding signal on the display electrodes when performing capacitive sensing. In one embodiment, the guarding signal may have similar characteristics as a modulated signal (e.g., similar amplitude and/or phase) driven on the sensor electrode to detect interaction between the input device and an input object. By driving a guarding signal that is similar to the modulated signal onto the display electrodes, the voltage difference between the sensor electrode and display electrode remains the same. Accordingly, the coupling capacitance between the sensor electrode and the display electrode does not affect a capacitance measurement used to detect the user interaction.
Abstract:
Embodiments described herein include a display device having a capacitive sensing device, a processing system and a method for detecting presence of an input object using a capacitive sensing device. In one embodiment, the display device includes a plurality of sensor electrodes, a field shaping electrode, and a processing system. Each sensor electrode includes at least one common electrode. Dimensions of each sensor electrode correspond to dimension of pixel elements of the display device. The field shaping electrode is disposed between two of the plurality of sensor electrodes. Dimensions of the field shaping electrode correspond to the dimension of pixel elements of the display device. The field shaping electrode is laterally spaced apart from the two sensor electrodes a distance corresponding to dimensions of the pixel elements. The processing system is coupled to the sensor electrodes and the field shaping electrode. The processing system is configured to, in a first processing mode, drive a transmitter signal onto a first sensor electrode of the sensor electrodes and receiving a resulting signal with the first sensor electrode of the sensor electrodes comprising effects corresponding to the transmitter signal.
Abstract:
An electrode matrix that is used for capacitive sensing may be integrated into a display panel of an input device. In one embodiment, source drivers may be mounted on the display panel which drive the display signals and capacitive sensing signals into the display panel. In one embodiment, the capacitive sensing signals may be routed on traces or lines that are interleaved on the same layer as the source lines used for setting a voltage on the pixels in the display panel during display updating. Using the interleaved traces, the source drivers may drive the capacitive sensing signals in parallel to a plurality of the electrodes in the matrix in a predefined pattern that spans one or more sensing cycles.
Abstract:
An electrode matrix that is used for capacitive sensing may be integrated into a display panel of an input device. In one embodiment, source drivers may be mounted on the display panel which drive the display signals and capacitive sensing signals into the display panel. In one embodiment, the capacitive sensing signals may be routed on wires or lines that are interleaved on the same layer as the source lines used for setting a voltage on the pixels in the display panel during display updating. Using the interleaved wires, the source drivers may drive the capacitive sensing signals in parallel to a plurality of the electrodes in the matrix in a predefined pattern that spans one or more touch cycles.