Abstract:
An organic light emitting display apparatus includes a substrate and includes an organic light emitting device that overlaps the substrate and includes an organic layer. The organic light emitting display apparatus further includes a planarization layer that overlaps the organic light emitting device and includes an organic material, wherein the organic light emitting device is disposed between the substrate and the planarization layer. The organic light emitting display apparatus further includes an encapsulation layer that overlaps the planarization layer and includes an inorganic material, wherein the planarization layer is disposed between the organic light emitting device and a portion of the encapsulation layer. The organic light emitting display apparatus further includes an intermediate layer that is disposed between the planarization layer and the portion of the encapsulation layer.
Abstract:
A method of manufacturing an organic light emitting diode display according to an exemplary embodiment of the present invention includes: forming a first electrode on a substrate; forming an insulation layer on the first electrode; etching the insulation layer to expose the first electrode so as to form a pixel defining layer having the same height as the first electrode; forming an organic layer including one or more emission layers on the first electrode of a sub-pixel region defined by the pixel defining layer by applying a laser-induced thermal imaging (LITI) method; and forming a second electrode on the organic layer.
Abstract:
An organic light emitting display device may include a first substrate, a first electrode disposed on the first substrate, a pixel defining layer disposed on the first electrode and the first substrate, an organic light emitting structure disposed on the first electrode, a second electrode disposed on the organic light emitting structure and the pixel defining layer, a second substrate disposed on the second electrode, etc. The pixel defining layer may include a fine uneven structure positioned in the display and the non-display regions. The organic light emitting structure may be substantially uniformly formed on the first electrode through the pixel defining layer having the fine uneven structure, so that an organic light emitting display device may exhibit increased lifetime and may show improved image quality.
Abstract:
A flexible display apparatus including: a first film including a first surface and a second surface that are opposite each other, and a first groove formed in the first surface, the first film having a first rigidity; a third film on the second surface of the first film; a fourth film facing the third film; an emission display unit between and encapsulated by the third film and the fourth film; and a second film on the fourth film and facing the first film, the second film having a second rigidity that is less than the first rigidity.
Abstract:
A flexible display apparatus including: a first film including a first surface and a second surface that are opposite each other, and a first groove formed in the first surface, the first film having a first rigidity; a third film on the second surface of the first film; a fourth film facing the third film; an emission display unit between and encapsulated by the third film and the fourth film; and a second film on the fourth film and facing the first film, the second film having a second rigidity that is less than the first rigidity.
Abstract:
A flexible display apparatus including: a first film including a first surface and a second surface that are opposite each other, and a first groove formed in the first surface, the first film having a first rigidity; a third film on the second surface of the first film; a fourth film facing the third film; an emission display unit between and encapsulated by the third film and the fourth film; and a second film on the fourth film and facing the first film, the second film having a second rigidity that is less than the first rigidity.
Abstract:
A flexible display apparatus including: a first film including a first surface and a second surface that are opposite each other, and a first groove formed in the first surface, the first film having a first rigidity; a third film on the second surface of the first film; a fourth film facing the third film; an emission display unit between and encapsulated by the third film and the fourth film; and a second film on the fourth film and facing the first film, the second film having a second rigidity that is less than the first rigidity.
Abstract:
A pixel circuit includes: an organic light emitting diode (“OLED”); a threshold circuit which generates an output signal based on an input signal, where the threshold circuit has a hysteresis characteristic with respect to the input signal; a first transistor including a first electrode connected to a data line, a second electrode connected to an input terminal of the threshold circuit, and a gate electrode connected to a scan line; and a second transistor including a first electrode connected to a first power, a second electrode connected to an anode of the organic light emitting diode, and a gate electrode connected to an output terminal of the threshold circuit, where the second transistor controls a current amount that flows to the organic light emitting diode from the first power based on the output signal of the threshold circuit.
Abstract:
An exemplary embodiment described technology relates generally to an organic light emitting diode (OLED) display and a manufacturing method thereof. The organic light emitting diode (OLED) display according to an exemplary embodiment includes: a substrate; an encapsulation member; an organic light emitting element between the substrate and the encapsulation member; a middle sealing member including one side disposed between the substrate and the encapsulation member and another side extended from the one side to be bent and enclosing an edge of the encapsulation member; a first sealant sealing and combining the one side of the middle sealing member and the substrate to each other; a second sealant sealing and combining the other side of the middle sealing member and the encapsulation member to each other; and a getter at the one side of the middle sealing member and the encapsulation member.
Abstract:
In one aspect, a display panel and a manufacturing method of the same is provided. The display panel includes a non-emission region layer having a plurality of emission regions and a connection region that is open to connect adjacent emission regions; an organic emission layer formed in each of the plurality of emission regions; a counter electrode formed in the emission regions and the connection region; and an encapsulation layer formed on the counter electrode.