Abstract:
A display device is disclosed. The display device has pixels which include three color sub-pixels, for example, red, green, and blue sub-pixels. The pixels also include a white sub-pixel. The display calculates data for the red, green, blue, and white sub-pixels based on data for red, green, and blue sub-pixels.
Abstract:
A device includes converters for converting first image data of an RGB-type into second image data of a YCbCr-type, into third image data of the YCbCr-type, and into fourth image data of the RGB-type, wherein a CbCr-coordinate system has six regions defined by coordinates of a reference color and of six primary colors, and when coordinates of the second image data are located in a region defined by coordinates of the reference color, a first primary color, and a second primary color, the coordinates of the second image data are determined by the coordinates of the reference color, the first primary color, the second primary color, coordinates of a target reference color corresponding to those of the reference color, coordinates of a first target primary color corresponding to those of the first primary color, and coordinates of a second target primary color corresponding to those of the second primary color.
Abstract:
A color gamut conversion system comprising a color gamut conversion function generator, a color gamut converter, and a scaler is disclosed. In some embodiments, the color gamut conversion function generator is configured to generate a color gamut conversion function for determining an intermediate color gamut located in a color space between a predetermined color gamut corresponding to a display panel of a display device and a standard color gamut, the color gamut converter is configured to receive input data supplied from an external image source and convert a color coordinate of the input data according to the generated color gamut conversion function and the scaler configured is to scale a value of the data converted by the color gamut converter, generate the value as output data, and transfer the output data.
Abstract:
A data signal processing device includes a load calculator and a compensation processor. The load calculator calculates an on-pixel rate (OPR) based on image data signals and positional weight values. The positional weight values are determined based on locations of pixels in a display panel. The OPR is proportional to a frame luminance load, which corresponds to a sum of driving currents for the pixels to emit light in each of a plurality of frames. The compensation processor compensates distorted luminance caused by the frame luminance load based on the OPR.
Abstract:
A display device including a data mapping unit configured to identify a minimum value of the three-color input data corresponding to red, green, and blue (RGB), to determine white output color data by multiplying the identified minimum value by a gain ratio, and to subtract the white output color data from each of the three-color input data to determine RGB output color data, a gain adjustment unit configured to determine a preliminary gain ratio to minimize standard deviations of each of the white and RGB output color data, and to change a preliminary gain ratio based on an accumulated sum of color data used for respective sub-pixels in a previously displayed image to determine the gain ratio, and a display unit including unit pixels, each including RGB and white sub-pixels, and configured to display an image which corresponds to the and RGB output color data.
Abstract:
A method of operating an organic light emitting display device including a red sub-pixel, a green sub-pixel, a blue sub-pixel and a white sub-pixel, wherein a first gamma voltage for the red, green and blue sub-pixels and a second gamma voltage for the white pixel are adjusted such that a sum of maximum luminances of the red, green and blue sub-pixels is substantially equal to a luminance of a white color displayed by the organic light emitting display device. With respect to a white portion of input data, a ratio of first data of the red, green and blue sub-pixels to second data of the white sub-pixel is adjusted based on a first accumulated driving amount of the red, green and blue sub-pixels and a second accumulated driving amount of the white sub-pixel.
Abstract:
A device for mapping a color gamut includes a color gamut determinator and a color gamut mapper. The color gamut determinator determines an output color gamut using a gain value corresponding to information of a first color gamut, information of a second color gamut and a control condition. The color gamut mapper converts the color gamut of an input image data into the output color gamut. Accordingly, it is possible to provide a device and method for mapping a color gamut, which can determine an optimal color gamut corresponding to a change in control condition, and accordingly improve color accuracy and color reproducibility.
Abstract:
A device for mapping a color gamut includes a color gamut determinator and a color gamut mapper. The color gamut determinator determines an output color gamut using a gain value corresponding to information of a first color gamut, information of a second color gamut and a control condition. The color gamut mapper converts the color gamut of an input image data into the output color gamut. Accordingly, it is possible to provide a device and method for mapping a color gamut, which can determine an optimal color gamut corresponding to a change in control condition, and accordingly improve color accuracy and color reproducibility.