Abstract:
An electronic device includes: a housing; a battery disposed in the housing; and a sensor module at least partially disposed in the housing, wherein the sensor module includes: a board; a biometric recognition sensor disposed on the board; a sealing member around at least a part of the board and at least part of the biometric recognition sensor, and a biosignal sensing electrode around at least a part of the sealing member, wherein the biosignal sensing electrode is electrically connected to the board and at least partially exposed outside of the housing.
Abstract:
Certain embodiments of the disclosure relate to microphone-equipped wearable devices, and more particularly, to wearable devices worn on users' ear. According to certain embodiments of the disclosure, a wearable device comprises a speaker, a microphone, and a housing, the housing includes a protrusion configured to be insertable into a user's ear, a first sound path including a first opening formed through an area of a surface of the protrusion, extending from the first opening in a first length, and including a second opening facing the speaker, and a second sound path including a third opening formed through another area of the surface of the protrusion, extending from the third opening in a second length larger than the first length, and including a fourth opening facing the microphone. Other certain embodiments are also possible.
Abstract:
An electronic device having a speaker device. The electronic device may include a housing, a speaker device disposed inside the housing, and a sound generation circuit electrically connected to the speaker device. The speaker device may include a sound generation plate movable in a first direction, and a sound reflection construction facing the sound generation plate to form a space between the sound generation plate and the sound reflection construction. The sound generation plate includes a first surface disposed substantially at a center of the sound generation plate, the first surface having a convex shape when viewed from inside the space, and the sound reflection construction includes a second surface substantially aligned with the first surface along an axis of the housing, the second surface having a concave shape when viewed from inside the space.
Abstract:
The present disclosure relates to a method and an apparatus for automatically controlling a gain in an electronic device based on a sensitivity of microphone. The method according to an embodiment of the present disclosure includes outputting a reference audio to a speaker and obtaining a sound signal output by the speaker through a microphone, comparing a parameter of the obtained sound signal with a stored parameter, and adjusting a gain of the microphone based on a result of the comparing.