Abstract:
An organic light emitting diode (OLED) display comprises a first substrate and a second substrate configured to comprise a pixel area and a non-pixel area other than the pixel area, a sealing member configured to adhere the first substrate and the second substrate together, reinforcing materials filled into the non-pixel area of the first substrate and the second substrate, and an accommodation unit configured to accommodate some of the reinforcing materials within at least one of the first substrate and the second substrate corresponding to the non-pixel area. A method of manufacturing the OLED display comprises: preparing a mother substrate, including a plurality of display panels and cutting lines between two adjacent display panels; cutting the mother substrate into separated display panel units; forming grooves on a side of each display panel unit; and filling reinforcing materials in a non-pixel area of the display panel units, some of the reinforcing materials flowing into the grooves.
Abstract:
An OLED display according to an exemplary embodiment includes: a first substrate; a second substrate arranged opposite to the first substrate; a sealant arranged in the shape of a closed loop along an edge of the second substrate between the first substrate and the edge of the second substrate; and a metal wire formed along the sealant between the first substrate and the sealant. One area of the metal wire has an opening pattern.
Abstract:
A capacitor device prevents capacitor failure and pixel failure by preventing the capacitor from experiencing a short circuit caused by disconnection of a bridge formed between electrodes of the capacitor and a display apparatus having the capacitor device. A display device comprises a thin film transistor, a light emitting device, and the capacitor device described above.
Abstract:
An organic light-emitting display device includes a first sub-pixel, a second sub-pixel, and a third sub-pixel on a substrate. Each of the first, second, and third sub-pixels includes a pixel circuit unit, a first and second pixel electrodes including a reflective film formed of a conductive material that permits light reflection, and a counter electrode that faces the first and second pixel electrodes. The first sub-pixel includes a first organic film between the counter electrode and the first and second pixel electrodes of the first sub-pixel, and includes a red light-emitting layer. The second sub-pixel includes a second organic film between the counter electrode and the first and second pixel electrodes of the second sub-pixel, and includes a green light-emitting layer. The third sub-pixel includes a third organic film between the counter electrode and the first and second pixel electrodes of the third sub-pixel, and includes a blue light-emitting layer.
Abstract:
An organic light-emitting display apparatus with improved electric properties comprises: a substrate; an insulation layer which is formed on the substrate, and which includes a penetration hole; a first electrode which is formed on the insulation layer; an intermediate layer which is formed on the first electrode, and which includes an organic light-emitting layer; a second electrode which is formed on the intermediate layer; and a fixing member which is formed in the penetration hole, and which contacts the first electrode.
Abstract:
An organic light emitting display device including a plurality of sub pixels, each of the sub pixels including an emissive layer between a pixel electrode and a counter electrode; and a partition wall defining regions of the plurality of sub pixels, wherein the partition wall is not located between at least one pair of adjacent sub pixels of the plurality of sub pixels.
Abstract:
An organic light emitting device is disclosed. In one embodiment, the device includes a plurality of pixels formed on a substrate, wherein each of the pixels includes: a first electrode layer formed on the substrate; an organic emission layer formed on the first electrode layer and a second electrode layer formed on the organic emission layer. Further, at least one of the first electrode layers of the pixels is externally patterned.
Abstract:
An organic light-emitting display device includes a substrate, a plurality of thin film transistors disposed on a first surface of the substrate, a passivation layer covering the plurality of thin film transistors, a plurality of first pixel electrodes disposed on the passivation layer, the first pixel electrodes overlapping the plurality of thin film transistors, each of the first pixel electrodes including a reflection layer formed of a conductive material that reflects light, a plurality of second pixel electrodes disposed on the passivation layer, the second pixel electrodes being connected to the first pixel electrodes respectively, the second pixel electrodes being formed of a conductive material that transmits light, an opposite electrode, the opposite electrode both allowing light to pass therethrough and reflecting light, the opposite electrode facing the first and second pixel electrodes, and an organic layer disposed among the first and second pixel electrodes and the opposite electrode.
Abstract:
Present embodiments may be directed to a capacitor device, including a first electrode, which includes a first area and a second area, separated from each other, and a first bridge located between the first area and the second area, the first bridge electrically interconnecting the first area and the second area; a second electrode arranged to face the first electrode; and a dielectric layer between the first electrode and the second electrode.
Abstract:
An organic light-emitting display device includes a substrate, a plurality of thin film transistors disposed on a first surface of the substrate, a passivation layer covering the plurality of thin film transistors, a plurality of first pixel electrodes disposed on the passivation layer, the first pixel electrodes overlapping the plurality of thin film transistors, each of the first pixel electrodes including a reflection layer formed of a conductive material that reflects light, a plurality of second pixel electrodes disposed on the passivation layer, the second pixel electrodes being connected to the first pixel electrodes respectively, the second pixel electrodes being formed of a conductive material that transmits light, an opposite electrode, the opposite electrode both allowing light to pass therethrough and reflecting light, the opposite electrode facing the first and second pixel electrodes, and an organic layer disposed among the first and second pixel electrodes and the opposite electrode.