Abstract:
A circuit may be configured to precompensate the storage of data on a storage device. The magnitude and polarity of the precompensated time adjustment can be determined by looking up data patterns of storage regions in a table. A boundary can include storage regions of the device used to determine the precompensation.
Abstract:
Methods and apparatuses for detecting mode hopping in a laser diode or other optical energy source in heat-assisted magnetic recording. An output power of the laser diode or other optical energy source is measured and the output power is differentiated over time to determine a rate of change. If it is determined that the rate of change exceeds a threshold value, a fault signal is asserted indicating a potential mode hopping event.
Abstract:
Apparatus and method for detecting media defects using a multi-sensor transducer. In some embodiments, a first pattern is written to a first track on a rotatable storage media and a second pattern is written to a second track on the media. A first read sensor of a multi-sensor transducer senses the first pattern from the first track and a second read sensor of the multi-sensor transducer concurrently senses the second pattern from the second track. At least one storage media defect is detected responsive to the sensed first and second patterns.
Abstract:
Apparatus and method for supplying electrical power to a device. A system on chip (SOC) integrated circuit includes a first region having a processing core and a second region characterized as an always on domain (AOD) power island electrically isolated from the first region and having a power control block. A first power supply module is used to apply power to the first region, and a second power supply module is used to apply power to the second region. The second power supply module includes a main switch between the first power supply module and a host input voltage terminal. The power control block initiates a low power mode by transitioning the main switch to an open state. This causes the first region to receive no electrical power while the second region continuously receives power during the low power mode.