Abstract:
A light-emitting element whose degree of deterioration with driving time is improved and of which emission colors are easily controlled. A light-emitting emitting element having a first electrode, a second electrode, and a layer containing an organic compound located between the first electrode and the second electrode, in which the layer containing the organic compound at least has, from the second electrode side, a light-emitting layer in which a first layer, a second layer, and a third layer are stacked, and a hole-transporting layer provided in contact with the third layer; the first layer contains a first organic compound and a second organic compound; the second layer contains a third organic compound and a fourth organic compound; and the third layer contains the first organic compound and a fifth organic compound.
Abstract:
A light-emitting element having good characteristics can be obtained by using a bipyridine compound having at least one 2,2′-bipyridine structure and at least two anthracene skeletons as light-emitting element materials. In particular, a bipyridine compound in which an anthracene skeleton is bonded to each of the 5-position and the 6-position of 2,2′-bipyridine through an arylene group can be synthesized and a light-emitting element having good characteristics can be obtained in the case where the bipyridine compound is used as a light-emitting element material.
Abstract:
A light-emitting element whose degree of deterioration with driving time is improved and of which emission colors are easily controlled. A light-emitting emitting element having a first electrode, a second electrode, and a layer containing an organic compound located between the first electrode and the second electrode, in which the layer containing the organic compound at least has, from the second electrode side, a light-emitting layer in which a first layer, a second layer, and a third layer are stacked, and a hole-transporting layer provided in contact with the third layer; the first layer contains a first organic compound and a second organic compound; the second layer contains a third organic compound and a fourth organic compound; and the third layer contains the first organic compound and a fifth organic compound.
Abstract:
A technique of manufacturing a display device with high productivity is provided. In addition, a high-definition display device with high color purity is provided. By adjusting the optical path length between an electrode having a reflective property and a light-emitting layer by the central wavelength of a wavelength range of light passing through a color filter layer, the high-definition display device with high color purity is provided without performing selective deposition of light-emitting layers. In a light-emitting element, a plurality of light-emitting layers emitting light of different colors are stacked. The closer the light-emitting layer is positioned to the electrode having a reflective property, the shorter the wavelength of light emitted from the light-emitting layer is.
Abstract:
An object is to provide a light-emitting element capable of emitting light with a high luminance even at a low voltage, and having a long lifetime. The light-emitting element includes n EL layers between an anode and a cathode (n is a natural number of two or more), and also includes, between m-th EL layer from the anode and (m+1)-th EL layer (m is a natural number, 1≤m≤n−1), a first layer including a first donor material in contact with the m-th EL layer, a second layer including an electron-transport material and a second donor material in contact with the first layer, and a third layer including a hole-transport material and an acceptor material in contact with the second layer and the (m+1)-th EL layer.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains at least a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
Abstract:
A light-emitting element with which a reduction in power consumption and an improvement in productivity of a display device can be achieved is provided. A technique of manufacturing a display device with high productivity is provided. The light-emitting element includes an electrode having a reflective property, and a first light-emitting layer, a charge generation layer, a second light-emitting layer, and an electrode having a light-transmitting property stacked in this order over the electrode having a reflective property. The optical path length between the electrode having a reflective property and the first light-emitting layer is one-quarter of the peak wavelength of the emission spectrum of the first light-emitting layer. The optical path length between the electrode having a reflective property and the second light-emitting layer is three-quarters of the peak wavelength of the emission spectrum of the second light-emitting layer.
Abstract:
An object is to provide a light-emitting element capable of emitting light with a high luminance even at a low voltage, and having a long lifetime. The light-emitting element includes n EL layers between an anode and a cathode (n is a natural number of two or more), and also includes, between m-th EL layer from the anode and (m+1)-th EL layer (m is a natural number, 1≤m≤n−1), a first layer including a first donor material in contact with the m-th EL layer, a second layer including an electron-transport material and a second donor material in contact with the first layer, and a third layer including a hole-transport material and an acceptor material in contact with the second layer and the (m+1)-th EL layer.
Abstract:
A light-emitting element whose degree of deterioration with driving time is improved and of which emission colors are easily controlled. A light-emitting emitting element having a first electrode, a second electrode, and a layer containing an organic compound located between the first electrode and the second electrode, in which the layer containing the organic compound at least has, from the second electrode side, a light-emitting layer in which a first layer, a second layer, and a third layer are stacked, and a hole-transporting layer provided in contact with the third layer; the first layer contains a first organic compound and a second organic compound; the second layer contains a third organic compound and a fourth organic compound; and the third layer contains the first organic compound and a fifth organic compound.
Abstract:
Novel benzoxazole derivatives are provided to reduce driving voltage of light-emitting elements, and to reduce power consumption of light-emitting elements, light-emitting devices, and electronic devices. A benzoxazole derivative represented by the general formula (G1) is provided. Since the benzoxazole derivative represented by the general formula (G1) has an electron-injecting property, the benzoxazole derivative can be suitably used for light-emitting elements, light-emitting devices, and electronic devices.