Abstract:
A scanning antenna includes a transmission and/or reception region including a plurality of antenna units and a non-transmission and/or reception region located in a region other than the transmission and/or reception region. The scanning antenna includes a TFT substrate, a slot substrate, and a liquid crystal layer provided between the TFT substrate and the slot substrate. The scanning antenna includes: at least one monitoring capacitance section formed in the non-transmission and/or reception region, the section including a liquid crystal layer and a monitoring capacitance, which includes a first measurement electrode and a second measurement electrode opposing each other with the liquid crystal layer interposed therebetween; and a voltage monitor connectable to the first measurement electrode of the monitoring capacitance.
Abstract:
The liquid crystal display panel includes: a first polarizing plate; a first λ/4 plate; a first substrate; a second λ/4 plate; a liquid crystal layer; a second substrate; and a second polarizing plate, wherein the first substrate includes a black matrix but no photo spacer, the second substrate includes a photo spacer overlapping with the black matrix, liquid crystal molecules in the liquid crystal layer homogeneously align with no voltage application, the second λ/4 plate covers no side surface of the photo spacer, and the in-plane slow axis of the first λ/4 plate forms an angle of 45° with the transmission axis of the first polarizing plate and is orthogonal to the in-plane slow axis of the second λ/4 plate.
Abstract:
A liquid crystal display panel includes a first λ/4 retardation layer, a first substrate, a color filter layer, a liquid crystal layer containing horizontally aligned liquid crystals, and a second λ/4 retardation layer that is formed from a different material from the first λ/4 retardation layer between the first substrate and the color filter layer or between the color filter layer and the liquid crystal layer. The second λ/4 retardation layer has a smaller thickness in a region overlapping the blue color filter than in a region overlapping the green color filter. The first λ/4 retardation layer provides a retardation Rout(λ) to light having a wavelength of λ nm. The second λ/4 retardation layer provides a retardation Rin(λ). The retardation Rout(λ) and the retardation Rin(λ) satisfy the following formula (1) in the region overlapping the blue color filter. −1.0 nm
Abstract:
The liquid crystal display panel includes: a first polarizing plate; a first λ/4 plate; a first substrate; a second λ/4 plate; a liquid crystal layer; a second substrate; and a second polarizing plate, wherein the first substrate includes a black matrix, and a photo spacer overlapping with the black matrix, d crystal molecules in the liquid crystal layer homogeneously align with no voltage application, the second λ/4 plate is made of a self-assembling photo alignment material containing a photo functional group capable of causing at least one chemical reaction selected from the group consisting of photodimerization, photoisomerization, and photo-Fries rearrangement, and covers a side surface of the photo spacer, and the in-plane stow axis of the first λ/4 plate forms an angle of 45° with the transmission axis of the first polarizing plate and is orthogonal to the in-plane slow axis of the second λ/4 plate.
Abstract:
A display device in which ambient light reflections, for example, from IPS or FFS type displays are reduced by a circular polariser (e.g., linear polariser combined with external quarter waveplate) to make the light circular polarized, as it traverses the multiple reflective layers between the polariser and LC layer, and then an internal quarter waveplate converts the light back to linear polarisation before it enters the LC, so the display can operate as normal, while the circular polariser absorbs unwanted reflections of ambient light from within the display.
Abstract:
A liquid crystal device (LCD) is configured for minimizing unwanted internal ambient light reflections. The LCD includes a plurality of layers, the layers comprising from a viewing side: a first linear polariser; an external retarder that is made of a cyclic olefin polymer (COP) material or a cyclic olefin copolymer (COC) material; a colour filter substrate; a colour filter layer; an internal reactive mesogen (RM) retarder alignment layer; an internal reactive mesogen (RM) retarder; a liquid crystal (LC) layer; and a second linear polarizer. The external retarder and the internal RM retarder are configured such that the optical properties (for example light polarization control function) of the external retarder and the internal retarder are matched to negate each other for light passing through the external retarder and the internal RM retarder. The LCD simultaneously maintains high image quality in both high and low ambient lighting conditions.
Abstract:
A synthetic polymer film includes a surface which has a plurality of raised portions. A two-dimensional size of the plurality of raised portions is in a range of more than 20 nm and less than 500 nm when viewed in a normal direction of the synthetic polymer film. The surface has a microbicidal effect. Further, a concentration of a nitrogen element included in the surface is not less than 0.7 at %.
Abstract:
The present invention provides a mirror display that can suppress warp of a half mirror plate with a reflective polarizer under heat to prevent distortion of a reflected image in a mirror mode. The mirror display of the present invention includes a half mirror plate that includes a first reflective polarizer and a first base material, a display device, and a warp-suppressing member that suppresses shrinking of the first reflective polarizer under heat. The first reflective polarizer and the first base material are integrated, and the display device is disposed on the back surface side of the half mirror plate.
Abstract:
The present invention provides a mirror display that exhibits non-deteriorated display quality in a display mode and is capable of adjusting the color of reflected light in a mirror mode. The mirror display includes, in the following order from the back surface side: a display device including a polarizing plate; a reflective polarizing plate; a birefringence mode liquid crystal display panel; and an absorptive polarizing plate, the reflective polarizing plate including a transmission axis parallel to the transmission axis of the absorptive polarizing plate, the liquid crystal display panel being capable of switching, in transmission of incident polarized light, between a non-coloring mode of not altering the polarization state of the polarized light and a coloring mode of altering the polarization state of the polarized light, the liquid crystal display panel selecting the coloring mode when the display device is in a non-display state, the liquid crystal display panel in the coloring mode increasing a retardation to a value greater than 275 nm in measurement with light having a wavelength of 550 nm.
Abstract:
A mold of at least one embodiment of the present invention includes: a base; a conductive layer provided on the base; and an anodized film provided on the conductive layer, the anodized film having an inverted motheye structure in its surface, the inverted motheye structure having a plurality of recessed portions whose two-dimensional size viewed in a direction normal to the surface is not less than 10 nm and less than 500 nm, wherein the base, the conductive layer, and the anodized film are capable of transmitting ultraviolet light.