-
11.
公开(公告)号:US20120106809A1
公开(公告)日:2012-05-03
申请号:US12925874
申请日:2010-11-01
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
IPC分类号: G06K9/00
CPC分类号: G06K9/342 , G06K9/0014
摘要: A teachable object contour mapping method for region partition receives an object boundary and a teaching image. An object contour mapping recipe creation is performed using the object boundary and the teaching image to generate object contour mapping recipe output. An object contour mapping is applied to an application image using the object contour mapping recipe and the application image to generate object contour map output. An object region partition using the object contour map to generate object region partition output An updateable object contour mapping method receives a contour mapping recipe and a validation image. An object contour mapping is performed using the object contour mapping recipe and the validation image to generate validation contour map output. An object region partition receives a region mask to generate validation object region partition output. A boundary correction is performed using the validation object region partition to generate corrected object boundary output. An update contour mapping is performed using the corrected object boundary, the validation image and the contour mapping recipe to generate updated contour mapping recipe output.
摘要翻译: 区域分区的可教对象轮廓映射方法接收对象边界和教学图像。 使用对象边界和教学图像执行对象轮廓映射配方创建,以生成对象轮廓映射配方输出。 使用对象轮廓映射配方和应用图像将对象轮廓映射应用于应用图像以生成对象轮廓图输出。 使用对象轮廓图生成对象区域分区输出的对象区域分区可更新对象轮廓映射方法接收轮廓映射配方和验证图像。 使用对象轮廓映射配方和验证图像执行对象轮廓映射以生成验证轮廓图输出。 对象区域分区接收区域掩码以生成验证对象区域分区输出。 使用验证对象区域分区执行边界校正,以生成校正对象边界输出。 使用校正的对象边界,验证图像和轮廓映射配方来执行更新轮廓映射以生成更新的轮廓映射配方输出。
-
12.
公开(公告)号:US20110274339A1
公开(公告)日:2011-11-10
申请号:US13135711
申请日:2011-07-13
申请人: Shih-Jong J. Lee , Seho Oh , Samuel V. Alworth
发明人: Shih-Jong J. Lee , Seho Oh , Samuel V. Alworth
IPC分类号: G06K9/00
CPC分类号: G06K9/00127 , G06K2009/3291
摘要: A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.
摘要翻译: 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元格状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。
-
公开(公告)号:US07463773B2
公开(公告)日:2008-12-09
申请号:US10723397
申请日:2003-11-26
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
CPC分类号: G06F17/30256 , G06F17/30277 , G06K9/6857 , G06T7/74 , Y10S707/99933
摘要: An initial search method uses the input image and the template to create an initial search result output. A high precision match uses the initial search result, the input image, and the template to create a high precision match result output. The high precision match method estimates high precision parameters by image interpolation and interpolation parameter optimization. The method also performs robust matching by limiting pixel contribution or pixel weighting. An invariant high precision match method estimates subpixel position and subsampling scale and rotation parameters by image interpolation and interpolation parameter optimization on the log-converted radial-angular transformation domain.
摘要翻译: 初始搜索方法使用输入图像和模板来创建初始搜索结果输出。 高精度匹配使用初始搜索结果,输入图像和模板来创建高精度匹配结果输出。 高精度匹配方法通过图像插值和插值参数优化来估计高精度参数。 该方法还通过限制像素贡献或像素加权来执行鲁棒匹配。 不变高精度匹配方法通过对数转换的径向角变换域的图像插值和插值参数优化来估计子像素位置和子采样比例尺和旋转参数。
-
14.
公开(公告)号:US20080120077A1
公开(公告)日:2008-05-22
申请号:US11604590
申请日:2006-11-22
申请人: Shih-Jong J. Lee , Seho Oh , Yuhui Y.C. Cheng , Samuel V. Alworth
发明人: Shih-Jong J. Lee , Seho Oh , Yuhui Y.C. Cheng , Samuel V. Alworth
IPC分类号: G06G7/48
CPC分类号: G06K9/00127 , G06K2009/3291
摘要: A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.
摘要翻译: 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。
-
公开(公告)号:US06941288B2
公开(公告)日:2005-09-06
申请号:US10118553
申请日:2002-04-08
申请人: Shih-Jong J. Lee , Owsley Lane , Seho Oh
发明人: Shih-Jong J. Lee , Owsley Lane , Seho Oh
CPC分类号: G06N5/025
摘要: A learning model is initiated during start-up learning to activate operation of a decision system. During operation of the decision system, data is qualified for use in online learning. Online learning allows a system to adapt or learn application dependent parameters to optimize or maintain its performance during normal operation. Methods for qualifying data for use in online learning include thresholding of features, restriction of score space for qualified objects, and using a different source of information than is used in the decision process. Clustering methods are used to improve the quality of the learning model. Using the cumulative distribution function to compare two distributions and produce a measure of similarity derives a metric for learning maturity.
摘要翻译: 在启动学习过程中启动学习模型以激活决策系统的运作。 在决策系统运行过程中,数据有资格用于在线学习。 在线学习允许系统适应或学习应用依赖参数,以在正常操作期间优化或维持其性能。 用于在线学习中使用资料的方法包括特征阈值,限定对象的分数空间限制,以及使用不同于决策过程中使用的信息源。 聚类方法用于提高学习模型的质量。 使用累积分布函数来比较两个分布并产生相似性度量来获得学习成熟度的度量。
-
公开(公告)号:US06829382B2
公开(公告)日:2004-12-07
申请号:US09882734
申请日:2001-06-13
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
IPC分类号: G06K900
CPC分类号: G06T7/0002 , G06T7/12 , G06T7/33 , G06T2207/30164
摘要: When application domain structure information is erroneously encoded into parameters for image processing and measurements the accuracy of the result can degrade. A structure-guided automatic alignment system for image processing receives an image input and application domain structure input and automatically creates an estimated structure output having improved alignment. Measurement and image processing robustness are improved.
摘要翻译: 当应用程序域结构信息被错误地编码为用于图像处理和测量的参数时,结果的精度可能降低。 用于图像处理的结构引导自动对准系统接收图像输入和应用域结构输入,并自动创建具有改进的对准的估计结构输出。 改善了测量和图像处理的鲁棒性。
-
公开(公告)号:US06456741B1
公开(公告)日:2002-09-24
申请号:US09739084
申请日:2000-12-15
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
IPC分类号: G06K946
CPC分类号: G06K9/4609 , G06T7/13
摘要: Structure-guided image estimation and measurement methods are described for computer vision applications. Results of the structure-guided estimation are symbolic representations of geometry entities such as lines, points, arcs and circles. The symbolic representation facilitates sub-pixel measurements by increasing the number of pixels used in the matching of image features to structural entities, improving the detection of structural entities within the image, weighting the contribution of each image sample to the measurement that is being made and optimizing that contribution. After the structure-guided estimation, geometric entities are represented by their symbolic representations. Structure-guided measurements can be conducted using the symbolic representation of the geometric entities. Measurements performed from the symbolic representation are not limited by image resolution or pixel quantization error and therefore can yield sub-pixel accuracy and repeatability.
摘要翻译: 针对计算机视觉应用描述了结构引导图像估计和测量方法。 结构指导估计的结果是几何实体的象征性表示,如线,点,弧和圆。 符号表示通过增加在图像特征与结构实体的匹配中使用的像素数量来促进子像素测量,改善图像内的结构实体的检测,对每个图像样本对正在进行的测量的贡献加权,以及 优化该贡献。在结构指导估计之后,几何实体由其符号表示来表示。 可以使用几何实体的符号表示来进行结构指导测量。 从符号表示进行的测量不受图像分辨率或像素量化误差的限制,因此可以产生子像素精度和重复性。
-
公开(公告)号:US08014590B2
公开(公告)日:2011-09-06
申请号:US11301292
申请日:2005-12-07
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
CPC分类号: G06K9/6219 , G06K9/38 , G06K9/6277
摘要: A directed pattern enhancement method receives a learning image and pattern enhancement directive. Pattern enhancement learning is performed using the learning image and the pattern enhancement directive to generate pattern enhancement recipe. An application image is received and a pattern enhancement application is performed using the application image and the pattern enhancement recipe to generate pattern enhanced image. A recognition thresholding is performed using the pattern enhanced image to generate recognition result.The pattern enhancement directive consists of background directive, patterns to enhance directive, and patterns to suppress directive.A partitioned modeling method receives an image region and performs feature extraction on the image region to generate characterization feature. A hierarchical partitioning is performed using the characterization feature to generate hierarchical partitions. A model generation is performed using the hierarchical partitions to generate partition model. The partitioned modeling further performs a partitioned matching step that matches an input point to the partition model to generate a matching score output.A partition model update method receives a partition model and input data for model update. A partition model update is performed using the partition model and the data to generate an updated partition model.
摘要翻译: 定向图案增强方法接收学习图像和图案增强指令。 使用学习图像和图案增强指令执行图案增强学习以产生图案增强配方。 接收应用图像,并且使用应用图像和图案增强配方来执行图案增强应用以生成图案增强图像。 使用图案增强图像执行识别阈值以产生识别结果。 模式增强指令包括背景指令,增强指令的模式和抑制指令的模式。 分区建模方法接收图像区域并对图像区域执行特征提取以产生表征特征。 使用表征特征来执行分层分区以生成分层分区。 使用分层分区执行模型生成以生成分区模型。 分区建模还执行将输入点与分区模型相匹配以产生匹配分数输出的分割匹配步骤。 分区模型更新方法接收分区模型并输入模型更新数据。 使用分区模型和数据执行分区模型更新,以生成更新的分区模型。
-
公开(公告)号:US07974464B2
公开(公告)日:2011-07-05
申请号:US12587157
申请日:2009-10-02
申请人: Shih-Jong J. Lee , Seho Oh
发明人: Shih-Jong J. Lee , Seho Oh
CPC分类号: G06K9/6219 , G06K9/38 , G06K9/6277
摘要: A directed pattern enhancement method receives a learning image and pattern enhancement directive. Pattern enhancement learning is performed using the learning image and the pattern enhancement directive to generate pattern enhancement recipe. An application image is received and a pattern enhancement application is performed using the application image and the pattern enhancement recipe to generate pattern enhanced image. A recognition thresholding is performed using the pattern enhanced image to generate recognition result. The pattern enhancement directive consists of background directive, patterns to enhance directive, and patterns to suppress directive. An update learning method performs pattern enhancement progressive update learning.
摘要翻译: 定向图案增强方法接收学习图像和图案增强指令。 使用学习图像和图案增强指令执行图案增强学习以产生图案增强配方。 接收应用图像,并且使用应用图像和图案增强配方来执行图案增强应用以生成图案增强图像。 使用图案增强图像执行识别阈值以产生识别结果。 模式增强指令包括背景指令,增强指令的模式和抑制指令的模式。 更新学习方法执行模式增强渐进式更新学习。
-
公开(公告)号:US07783113B2
公开(公告)日:2010-08-24
申请号:US10961663
申请日:2004-10-08
申请人: Seho Oh , Shih-Jong J. Lee , Shinichi Nakajima , Yuji Kokumai
发明人: Seho Oh , Shih-Jong J. Lee , Shinichi Nakajima , Yuji Kokumai
IPC分类号: G06K9/62
CPC分类号: G06K9/3216 , G06T7/001 , G06T2207/30148
摘要: A partition pattern template generation method for alignment receives a learning image and performs partition template generation using the learning image to generate a plurality of partition template result output. A partition template acceptance test is performed using the plurality of partition template results to generate partition templates or failure result.A partition template search method for alignment receives an alignment image and partition templates and performs a plurality of template search steps to generate a plurality of matching scores output. A partition integration method is performed using the plurality of matching scores to generate a partition template search result.A partition integration error self checking method receives a preliminary template search result position and a plurality of the matching scores. A matching score profile comparison is performed using the plurality of the matching scores and the expected matching score profile to generate the template search result.
摘要翻译: 用于对准的分割图案模板生成方法接收学习图像,并使用学习图像来执行分割模板生成,以生成多个分割模板结果输出。 使用多个分区模板结果执行分区模板验收测试,以生成分区模板或故障结果。 用于对准的分割模板搜索方法接收对准图像和分割模板,并且执行多个模板搜索步骤以生成多个匹配分数输出。 使用多个匹配分数来执行分区集成方法以生成分区模板搜索结果。 分区整合错误自检方法接收初步模板搜索结果位置和多个匹配分数。 使用多个匹配分数和预期匹配分数分布来执行匹配分数分布比较,以生成模板搜索结果。
-
-
-
-
-
-
-
-
-